在△ABC中,AB=AC,点E,F分别在AB,AC上,AE=AF,BF与CE相交于点P,求证:PB=PC,并请直接写出图中其他相等的线段.
![]()
证明见解析;BF=CE,PF=PE,BE=CF.
【解析】
试题分析:应用等腰三角形等边对等角的性质得到∠ABC=∠ACB,从而根据ASA证明ΔABF≌ΔACE,由全等对应边相等的性质得∠ABF=∠ACE,再由等腰三角形等角对等边的判定证得结论.由全等和等量代换可得图中其他相等的线段:BF=CE,PF=PE,BE=CF.
试题解析:∵AB=AC,∴∠ABC=∠ACB.
又∴AE=AF,∠A=∠A,∴ΔABF≌ΔACE(ASA).
∴∠ABF=∠ACE.∴∠PBC=∠PCB.∴ PB=PC.
相等的线段还有BF=CE,PF=PE,BE=CF.
考点:1.等腰三角形的判定和性质;2.全等三角形的判定和性质.
科目:初中数学 来源:2014年初中毕业升学考试(浙江温州卷)数学(解析版) 题型:解答题
如图,在平面直角坐标系中,点A,B的坐标分别是(-3,0),(0,6),动点P从点O出发,沿x轴正方向以每秒1个单位的速度运动,同时动点C从点B出发,沿射线BO方向以每秒2个单位的速度运动。以CP,CO为邻边构造□PCOD,在线段OP延长线上取点E,使PE=AO,设点P运动的时间为
秒.
(1)当点C运动到线段OB的中点时,求
的值及点E的坐标;
(2)当点C在线段OB上时,求证:四边形ADEC为平行四边形;
(3)在线段PE上取点F,使PF=1,过点F作MN⊥PE,截取FM=2,FN=1,且点M,N分别在第一、四象限,在运动过程中,设□PCOD的面积为S.
①当点M,N中,有一点落在四边形ADEC的边上时,求出所有满足条件的
的值;
②若点M,N中恰好只有一个点落在四边形ADEC内部(不包括边界)时,直接写出S的取值范围.
![]()
查看答案和解析>>
科目:初中数学 来源:2014年初中毕业升学考试(浙江温州卷)数学(解析版) 题型:选择题
如图,已知点A,B,C在⊙O上,
为优弧,下列选项中与∠AOB相等的是( )
![]()
A.2∠C B.4∠B C.4∠A D.∠B+∠C
查看答案和解析>>
科目:初中数学 来源:2014年初中毕业升学考试(浙江杭州卷)数学(解析版) 题型:解答题
复习课中,教师给出关于x的函数
(k是实数).
教师:请独立思考,并把探索发现的与该函数有关的结论(性质)写到黑板上.
学生思考后,黑板上出现了一些结论.教师作为活动一员,又补充一些结论,并从中选择如下四条:
①存在函数,其图像经过(1,0)点;
②函数图像与坐标轴总有三个不同的交点;
③当
时,不是y随x的增大而增大就是y随x的增大而减小;
④若函数有最大值,则最大值必为正数,若函数有最小值,则最小值必为负数;
教师:请你分别判断四条结论的真假,并给出理由,最后简单写出解决问题时所用的数学方法.
查看答案和解析>>
科目:初中数学 来源:2014年初中毕业升学考试(浙江宁波卷)数学(解析版) 题型:填空题
某冷饮店一天售出各种口味雪糕数量的扇形统计图如图所示,其中售出红豆口味的雪糕200支,那么售出水果口味雪糕的数量是 支
![]()
查看答案和解析>>
科目:初中数学 来源:2014年初中毕业升学考试(江苏镇江卷)数学(解析版) 题型:解答题
如图1,在平面直角坐标系xOy中,点M为抛物线
的顶点,过点(0,4)作x轴的平行线,交抛物线于点P、Q(点P在Q的左侧),PQ=4.
(1)求抛物线的函数关系式,并写出点P的坐标;
(2)小丽发现:将抛物线
绕着点P旋转180°,所得新抛物线的顶点恰为坐标原点O,你认为正确吗?请说明理由;
(3)如图2,已知点A(1,0),以PA为边作矩形PABC(点P、A、B、C按顺时针的方向排列),
.
①写出C点的坐标:C( , )(坐标用含有t的代数式表示);
②若点C在题(2)中旋转后的新抛物线上,求t的值.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com