如图1,在平面直角坐标系xOy中,点M为抛物线
的顶点,过点(0,4)作x轴的平行线,交抛物线于点P、Q(点P在Q的左侧),PQ=4.
(1)求抛物线的函数关系式,并写出点P的坐标;
(2)小丽发现:将抛物线
绕着点P旋转180°,所得新抛物线的顶点恰为坐标原点O,你认为正确吗?请说明理由;
(3)如图2,已知点A(1,0),以PA为边作矩形PABC(点P、A、B、C按顺时针的方向排列),
.
①写出C点的坐标:C( , )(坐标用含有t的代数式表示);
②若点C在题(2)中旋转后的新抛物线上,求t的值.
![]()
(1)
;(2,4);(2)正确,理由见解析;(3)①-4t+2,4+t;②
.
【解析】
试题分析:(1)把P的纵坐标代入抛物线的解析式得到关于x的方程,根据根与系数的关系求得和PQ=4,求得n的值,即可求得解析式.
(2)根据旋转的性质得到Q绕着点P旋转180°后的对称点为Q′(-2,4),得出新抛物线的对称轴是y轴,然后求得抛物线的顶点到直线PQ的距离为4,即可判断新抛物线顶点应为坐标原点.
(3)①根据三角形相似即可求得C的坐标:
如答图,过P作x轴的垂线,交x轴于M,过C作CN⊥MN于N,
∵
,∴
.
∵易得△APM∽△PCN,∴
.
∵AM=2-1=1,PM=4,∴PN=t,CN=4t.
∴MN=4+t.
∴C(-4t+2,4+t),
![]()
②由(1)可知,旋转后的新抛物线是
,新抛物线是
过P(2,4),求得新抛物线的解析式,把C(-4t+2,4+t)代入即可求得t的值.
试题解析:【解析】
(1)∵抛物线
过点P,P点的纵坐标为4,
∴
即
.
∴
.
∵PQ=4,∴
,即
,即
.
∴
,解得:n=4.
∴抛物线的函数关系式为:
.
由
解得x=2或x=6.
∴P(2,4).
(2)正确,理由如下:
∵P(2,4),PQ=4,∴Q绕着点P旋转180°后的对称点为Q′(-2,4).
∴P与Q′正好关于y轴对称.
∴所得新抛物线的对称轴是y轴,
∵抛物线
,∴抛物线的顶点M(4,8).
∴顶点M到直线PQ的距离为4.
∴所得新抛物线顶点到直线PQ的距离为4.
∴所得新抛物线顶点应为坐标原点.
(3)①-4t+2,4+t.
②由(1)可知,旋转后的新抛物线是
,
∵新抛物线
过P(2,4),∴4=4a,解得a=1.
∴旋转后的新抛物线是
.
∵C(-4t+2,4+t)在抛物线
上,
∴
,解得:t=0(舍去)或t=
.
∴t=
.
考点:1.二次函数综合题;2.线动旋转问题;3.曲线上点的坐标与方程的关系;4.一元二次方程根与系数的关系;5.二次函数的性质;6. 旋转和轴对称的性质;7.方程思想的应用.
科目:初中数学 来源:2014年初中毕业升学考试(浙江杭州卷)数学(解析版) 题型:解答题
在△ABC中,AB=AC,点E,F分别在AB,AC上,AE=AF,BF与CE相交于点P,求证:PB=PC,并请直接写出图中其他相等的线段.
![]()
查看答案和解析>>
科目:初中数学 来源:2014年初中毕业升学考试(江西南昌卷)数学(解析版) 题型:选择题
如图1,将一个边长为a的正方形纸片剪去两个小矩形,得到一个“
”的图案,如图2所示,再将剪下的两个小矩形拼成一个新的矩形,如图3所示,则新矩形的周长可表示为( )
![]()
A.2a﹣3b B.4a﹣8b C.2a﹣4b D.4a﹣10b
查看答案和解析>>
科目:初中数学 来源:2014年初中毕业升学考试(江西南昌卷)数学(解析版) 题型:选择题
下列运算正确的是( )
A.a2+a3=a5 B.(﹣2a2)3=﹣6a6 C.(2a+1)(2a﹣1)=2a2﹣1 D.(2a3﹣a2)÷a2=2a﹣1
查看答案和解析>>
科目:初中数学 来源:2014年初中毕业升学考试(江苏镇江卷)数学(解析版) 题型:解答题
在一只不透明的布袋中装有红球、黄球各若干个,这些球除颜色外都相同,均匀摇匀.
(1)若布袋中有3个红球,1个黄球.从布袋中一次摸出2个球,计算“摸出的球恰是一红一黄”的概率(用“画树状图”或“列表”的方法写出计算过程);
(2)若布袋中有3个红球,x个黄球.
请写出一个x的值 ,使得事件“从布袋中一次摸出4个球,都是黄球”是不可能的事件;
(3)若布袋中有3个红球,4个黄球.
我们知道:“从袋中一次摸出4个球,至少有一个黄球”为必然事件.
请你仿照这个表述,设计一个必然事件: .
查看答案和解析>>
科目:初中数学 来源:2014年初中毕业升学考试(江苏连云港卷)数学(解析版) 题型:解答题
某数学兴趣小组对线段上的动点问题进行探究,已知AB=8.
问题思考:
如图1,点P为线段AB上的一个动点,分别以AP、BP为边在同侧作正方形APDC与正方形PBFE.
(1)在点P运动时,这两个正方形面积之和是定值吗?如果时求出;若不是,求出这两个正方形面积之和的最小值.
(2)分别连接AD、DF、AF,AF交DP于点A,当点P运动时,在△APK、△ADK、△DFK中,是否存在两个面积始终相等的三角形?请说明理由.
![]()
问题拓展:
(3)如图2,以AB为边作正方形ABCD,动点P、Q在正方形ABCD的边上运动,且PQ=8.若点P从点A出发,沿A→B→C→D的线路,向D点运动,求点P从A到D的运动过程中,PQ的中点O所经过的路径的长。
(4)如图(3),在“问题思考”中,若点M、N是线段AB上的两点,且AM=BM=1,点G、H分别是边CD、EF的中点.请直接写出点P从M到N的运动过程中,GH的中点O所经过的路径的长及OM+OB的最小值.
![]()
查看答案和解析>>
科目:初中数学 来源:2014年初中毕业升学考试(江苏苏州卷)数学(解析版) 题型:填空题
如图,在△ABC中,AB=AC=5,BC=8.若∠BPC=
∠BAC,则tan∠BPC= .
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com