精英家教网 > 初中数学 > 题目详情

【题目】如图,在正方形ABCD中,P为对角线BD上一点,MN为正方形GHMN的一边,若正方形AEOF的面积为18,则三角形PMN的面积是______

【答案】8

【解析】

根据正方形AEOF的面积为18得到正方形AEOF的边长,因为DB是对角线,能证得DNGDFO是等腰直角三角形,从而得出正方形ABCD的边长,结合四边形GNMH是正方形,能得出DG=GH=HB,即可得到PNM的面积.

解:∵正方形AEOF的面积为18

AE=EO=OF=AF=

DB是正方形的ABCD的对角线,

∴∠CDB=FDB =45°

∴△DNGDFO是等腰直角三角形,

AD=DG=GN

同理可得:MH=HB

DG=GH=HB

AD=

BD=

GH=BD=4

∴△PNM的面积:MN×GN×=4×4×=8

故答案为:8

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】(1)请画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标.

(2)请画出△ABC绕点B逆时针旋转90°后的△A2BC2

(3)求出(2)中C点旋转到C2点所经过的路径长(结果保留根号和π).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知:关于x的二次函数的图象与x轴交于点A(1,0)和点B,与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D.

(1)求二次函数的表达式;

(2)y轴上是否存在一点P,使PBC为等腰三角形.若存在,请求出点P的坐标;

(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M 达点B时,点MN同时停止运动,问点MN运动到何处时,MNB面积最大,试求出最大面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在如图所示的正方形网络中,每个小正方形的边长为1,格点三角形(顶点是网络的交点的三角形)ABC的顶点AC的坐标分别为(﹣45),(﹣13).

1)请在如图所示的网格平面内作出平面直角坐标系;

2)请作出△ABC关于y轴对称的△A1B1C1

3)点B关于x轴的对称点B2的坐标是   

4)△ABC的面积为   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平面直角坐标系XOY中,若A(0,a)、B(b,0)且(a﹣4)2+=0,以AB为直角边作等腰RtABC,CAB=90°,AB=AC.

(1)求C点坐标;

(2)如图过C点作CDX轴于D,连接AD,求ADC的度数;

(3)如图在(1)中,点A在Y轴上运动,以OA为直角边作等腰RtOAE,连接EC,交Y轴于F,试问A点在运动过程中SAOB:SAEF的值是否会发生变化?如果没有变化,请直接写出它们的比值   (不需要解答过程或说明理由).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】四边形ABCD的对角线AC将其分割成两个三角形:

1)如图1.若∠BAC=DACABAD,求证:ABADCBCD

2)如图2.若∠ACD+BAC=180°,∠B=D,求证:BC=AD

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图,四边形中,中点,平分.连接

(1)是否平分?请证明你的结论;

(2)线段有怎样的位置关系?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平分,且,若点分别在上,且为等边三角形,则满足上述条件的有(

A.1B.2C.3D.无数个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线MN∥PQ,直线AB分别与MN,PQ相交于点A,B.小宇同学利用尺规按以下步骤作图:以点A为圆心,以任意长为半径作弧交AN于点C,交AB于点D;②分别以C,D为圆心,以大于CD长为半径作弧,两弧在∠NAB内交于点E;③作射线AEPQ于点F.若AB=2,∠ABP=60°,则线段AF的长为_____

查看答案和解析>>

同步练习册答案