精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,直线AB与x轴,y轴分别交于点A(6,0),B(0,8),点C的坐标为(0,m),过点C作CE⊥AB于点E,点D为x轴上的一动点,连接CD,DE,以CD,DE为边作CDEF.

(1)当0<m<8时,求CE的长(用含m的代数式表示);
(2)当m=3时,是否存在点D,使CDEF的顶点F恰好落在y轴上?若存在,求出点D的坐标;若不存在,请说明理由;
(3)点D在整个运动过程中,若存在唯一的位置,使得CDEF为矩形,请求出所有满足条件的m的值.

【答案】
(1)

解:∵A(6,0),B(0,8).

∴OA=6,OB=8.

∴AB=10,

∵∠CEB=∠AOB=90°,

又∵∠OBA=∠EBC,

∴△BCE∽△BAO,

= ,即 =

∴CE= m


(2)

解:∵m=3,

∴BC=8﹣m=5,CE= m=3.

∴BE=4,

∴AE=AB﹣BE=6.

∵点F落在y轴上(如图2).

∴DE∥BO,

∴△EDA∽△BOA,

= =

∴OD=

∴点D的坐标为( ,0)


(3)

解:取CE的中点P,过P作PG⊥y轴于点G.

则CP= CE= m.

(Ⅰ)当m>0时,

①当0<m<8时,如图3.易证∠GCP=∠BAO,

∴cos∠GCP=cos∠BAO=

∴CG=CPcos∠GCP= m)= m.

∴OG=OC+CG=m+ m= m+

根据题意得,得:OG=CP,

m+ = m,

解得:m=

②当m≥8时,OG>CP,显然不存在满足条件的m的值.

(Ⅱ)当m=0时,即点C与原点O重合(如图4).

(Ⅲ)当m<0时,

①当点E与点A重合时,(如图5),

易证△COA∽△AOB,

= ,即 =

解得:m=﹣

②当点E与点A不重合时,(如图6).

OG=OC﹣CG=﹣m﹣( m)

=﹣ m﹣

由题意得:OG=CP,

∴﹣ m﹣ = m.

解得m=﹣

综上所述,m的值是 或0或﹣ 或﹣


【解析】(1)首先证明△BCE∽△BAO,根据相似三角形的对应边的比相等即可求得;(2)证明△EDA∽△BOA,根据相似三角形的对应边的比相等即可求得;(3)分m>0,m=0和m<0三种情况进行讨论,当m=0时,一定成立,当m>0时,分0<m<8和m>8两种情况,利用三角函数的定义即可求解.当m<0时,分点E与点A重合和点E与点A不重合时,两种情况进行讨论.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知直线l:y=﹣x+4,在直线l上取点B1,过B1分别向x轴,y轴作垂线,交x轴于A1,交y轴于C1,使四边形OA1B1C1为正方形;在直线l上取点B2,过B2分别向x轴,A1B1作垂线,交x轴于A2,交A1B1C2,使四边形A1A2B2C2为正方形;按此方法在直线l上顺次取点B3,B4,…,Bn,依次作正方形A2A3B3C3,A3A4B4C4,…,An1AnBnCn,则A3的坐标为___,B5的坐标为___

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,透明的圆柱形容器(容器厚度忽略不计)的高为12cm,底面周长为10cm,在容器内壁离容器底部3cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3cm的点A处,则蚂蚁吃到饭粒需爬行的最短路径是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1所示,已知y= (x>0)图象上一点P,PA⊥x轴于点A(a,0),点B坐标为(0,b)(b>0),动点M是y轴正半轴上B点上方的点,动点N在射线AP上,过点B作AB的垂线,交射线AP于点D,交直线MN于点Q连接AQ,取AQ的中点为C.

(1)如图2,连接BP,求△PAB的面积;
(2)当点Q在线段BD上时,若四边形BQNC是菱形,面积为2 ,求此时P点的坐标;
(3)当点Q在射线BD上时,且a=3,b=1,若以点B,C,N,Q为顶点的四边形是平行四边形,求这个平行四边形的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=a(x﹣1)2+4与x轴交于点A,B,与y轴交于点C,过点C作CD∥x轴交抛物线的对称轴于点D,连接BD,已知点A的坐标为(﹣1,0)
(1)求该抛物线的解析式;
(2)求梯形COBD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,O为坐标原点,四边形OABC为矩形,A(10,0),C(0,8),点P在边BC上以每秒1个单位长的速度由点C向点B运动,同时点Q在边AB上以每秒a个单位长的速度由点A向点B运动,运动时间为t秒(t>0).

(1)若反比例函数y= 图象经过P点、Q点,求a的值;
(2)若OQ垂直平分AP,求a的值;
(3)当Q点运动到AB中点时,是否存在a使△OPQ为直角三角形?若存在,求出a的值,若不存在请说明理由;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我市某中学有一块四边形的空地ABCD,如图所示,为了绿化环境,学校计划在空地上种植草皮,经测量∠A=90°,AB=3m,DA=4m,BC=12m,CD=13m.

(1)求出空地ABCD的面积.

(2)若每种植1平方米草皮需要200元,问总共需投入多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙、丙三位同学在操场上互相传球,假设他们相互间传球是等可能的,并且由甲首先开始传球.
(1)经过2次传球后,球仍回到甲手中的概率是
(2)请用列举法(画树状图或列表)求经过3次传球后,球仍回到甲手中的概率;
(3)猜想并直接写出结论:经过n次传球后,球传到甲、乙这两位同学手中的概率:P(球传到甲手中)和P(球传到乙手中)的大小关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,点O为直线AB上一点,过点O作射线OC,使BOC=120°.将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.

1)将图1中的三角板绕点O逆时针旋转至图2,使一边OMBOC的内部,且恰好平分BOC.问:此时直线ON是否平分AOC?请说明理由.

2)将图1中的三角板绕点O以每秒的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角AOC,则t的值为 (直接写出结果).

3)将图1中的三角板绕点O顺时针旋转至图3,使ONAOC的内部,求AOMNOC的度数.

查看答案和解析>>

同步练习册答案