精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,∠ACB90°.小聪同学利用直尺和圆规完成了如下作图:

①分别以点AB为圆心,以大于AB长为半径画弧,两弧交于点MN,过点MN作直线与AB交于点D

②连接CD,以点D为圆心,以一定长为半径画弧,交MN于点E,交CD于点F,以点C为圆心,以同样定长为半径画弧,与CD交于点G,以点G为圆心,以EF长为半径画弧与前弧交于点H.作射线CHAB交于点K,请根据以上操作,解答下列问题

1)由尺规作图可知:直线MN是线段AB   线,∠DCK   

2)若CD5AK2,求CK的长.

【答案】1)垂直平分,∠CDM;(2CK4.

【解析】

1)利用基本作图(作线段的垂直平分线和作一个角等于已知角)填空;

2)先利用CD为斜边上的中线得到ADCDBD5.则DK3,再利用∠DCK=∠CDM得到CKMN,所以∠CKD=∠MDB90°,然后利用勾股定理计算CK的长.

1)由作法得直线MN是线段AB的垂直平分线,∠DCK=∠CDM

故答案为垂直平分;∠CDM

2)∵∠ACB90°,ADBD

ADCDBD5

DKADAK3

∵∠DCK=∠CDM

CKMN

∴∠CKD=∠MDB90°,

CK4

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1,若抛物线L1的顶点A在抛物线L2上,抛物线L2的顶点B也在抛物线L1上(点A与点B不重合)我们把这样的两抛物线L1L2互称为友好抛物线,可见一条抛物线的友好抛物线可以有很多条.

1)如图2,已知抛物线L3y=2x2-8x+4y轴交于点C,试求出点C关于该抛物线对称轴对称的对称点D的坐标;

2)请求出以点D为顶点的L3友好抛物线L4的解析式,并指出L3L4y同时随x增大而增大的自变量的取值范围;

3)若抛物y=a1x-m2+n的任意一条友好抛物线的解析式为y=a2x-h2+k,请写出a1a2的关系式,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知AD是△ABC的中线P是线段AD上的一点(不与点AD重合),连接PBPCEFGH分别是ABACPBPC的中点,ADEF交于点M

1)如图1,当ABAC时,求证:四边形EGHF是矩形;

2)如图2,当点P与点M重合时,在不添加任何辅助线的条件下,写出所有与△BPE面积相等的三角形(不包括△BPE本身).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】现有一组数据:165160166170164165,若去掉最后一个数165,下列说法正确的是(  )

A. 平均数不变,方差变大B. 平均数不变,方差不变

C. 平均数不变,方差变小D. 平均数变小,方差不变

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,关于x的二次函数yax22axa0)的顶点为C,与x轴交于点OA,关于x的一次函数y=﹣axa0).

1)试说明点C在一次函数的图象上;

2)若两个点(ky1)、(k+2y2)(k≠0±2)都在二次函数的图象上,是否存在整数k,满足?如果存在,请求出k的值;如果不存在,请说明理由;

3)若点E是二次函数图象上一动点,E点的横坐标是n,且﹣1≤n≤1,过点Ey轴的平行线,与一次函数图象交于点F,当0a≤2时,求线段EF的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,BPC是等边三角形,BPCP的延长线分别交AD于点EF,连接BDDPBDCF相交于点H.给出下列结论:①BE2AE;②DFPBPH;③;④DP2PHPC;其中正确的是(  )

A. ①②③④B. ①③④C. ②③D. ①②④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系中,已知抛物线yax2+bx5x轴交于A(﹣10),B50)两点,与y轴交于点C

1)求抛物线的函数表达式;

2)如图2CEx轴与抛物线相交于点E,点H是直线CE下方抛物线上的动点,过点H且与y轴平行的直线与BCCE分别相交于点FG,试探究当点H运动到何处时,四边形CHEF的面积最大,求点H的坐标;

3)若点K为抛物线的顶点,点M4m)是该抛物线上的一点,在x轴,y轴上分别找点PQ,使四边形PQKM的周长最小,求出点PQ的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,,连结AC,过点C作直线lAB,点P是直线l上的一个动点,直线PA与⊙O交于另一点D,连结CD,设直线PB与直线AC交于点E.

(1)求∠BAC的度数;

(2)当点DAB上方,且CDBP时,求证:PC=AC;

(3)在点P的运动过程中

①当点A在线段PB的中垂线上或点B在线段PA的中垂线上时,求出所有满足条件的∠ACD的度数;

②设⊙O的半径为6,点E到直线l的距离为3,连结BD,DE,直接写出BDE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】校园安全受到全社会的广泛关注,我市某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.请你根据统计图中所提供的信息解答下列问题:

(1)接受问卷调查的学生共有_______人,扇形统计图中基本了解部分所对应扇形的圆心角为_______°;

(2)请补全条形统计图;

(3)若该中学共有学生1800人,请根据上述调查结果,估计该中学学生中对校园安全知识 达到了解基本了解程度的总人数;

查看答案和解析>>

同步练习册答案