精英家教网 > 初中数学 > 题目详情

【题目】如图1,若抛物线L1的顶点A在抛物线L2上,抛物线L2的顶点B也在抛物线L1上(点A与点B不重合)我们把这样的两抛物线L1L2互称为友好抛物线,可见一条抛物线的友好抛物线可以有很多条.

1)如图2,已知抛物线L3y=2x2-8x+4y轴交于点C,试求出点C关于该抛物线对称轴对称的对称点D的坐标;

2)请求出以点D为顶点的L3友好抛物线L4的解析式,并指出L3L4y同时随x增大而增大的自变量的取值范围;

3)若抛物y=a1x-m2+n的任意一条友好抛物线的解析式为y=a2x-h2+k,请写出a1a2的关系式,并说明理由.

【答案】1)(44);(22≤x≤4;(3a1=-a2,理由如下:见解析

【解析】

1)设x0,求出y的值,即可得到C的坐标,把抛物线L3y2x28x4配方即可得到抛物线的对称轴,由此可求出点C关于该抛物线对称轴对称的对称点D的坐标;

2)由(1)可知点D的坐标为(44),再由条件以点D为顶点的L3友好抛物线L4的解析式,可求出L4的解析式,进而可求出L3L4y同时随x增大而增大的自变量的取值范围;

3)根据:抛物线L1的顶点A在抛物线L2上,抛物线L2的顶点B也在抛物线L1上,可以列出两个方程,相加可得:(a1a2)(mh20,可得a1a2.

解:(1)∵抛物线L3y=2x2-8x+4

y=2x-22-4

∴顶点为(24),对称轴为x=2

x=0,则y=4

C04),

∴点C关于该抛物线对称轴对称的对称点D的坐标为:(44);

2)∵以点D44)为顶点的抛物线L4过点(2-4),

L4的解析式

将点(2-4)代入L4可得,a=-2

L4的解析式为y=-2x-42+4

L3L4的两个交点分别为(44)和(2-4

L3L4y同时随x增大而增大的自变量的取值范围是:2≤x≤4时;

3a1=-a2

理由如下:

∵抛物线L1的顶点A在抛物线L2上,抛物线L2的顶点B也在抛物线L1上,

∴可以列出两个方程

+②得:(a1+a2)(m-h2=0

a1=-a2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某数学兴趣小组用高为1.2米的测角仪测量小树AB的高度,如图,在距AB一定距离的F处测得小树顶部A的仰角为50°,沿BF方向行走3.5米到G处时,又测得小树顶部A的仰角为27°,求小树AB的高度.(参考数据:sin27°=0.45cos27°=0.89tan27°=0.5sin50°=0.77cos50°=0.64tan50°=1.2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为更精准地关爱留守学生,某学校将留守学生的各种情形分成四种类型:A.由父母一方照看;B.由爷爷奶奶照看;C.由叔姨等近亲照看;D.直接寄宿学校.某数学小组随机调查了一个班级,发现该班留守学生数量占全班总人数的20%,并将调查结果制成如下两幅不完整的统计图.

1)该班共有   名留守学生,B类型留守学生所在扇形的圆心角的度数为   

2)将条形统计图补充完整;

3)已知该校共有2400名学生,现学校打算对D类型的留守学生进行手拉手关爱活动,请你估计该校将有多少名留守学生在此关爱活动中受益?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABCD的对角线ACBD相交于点OOEOF

1)求证:BOE≌△DOF

2)若BDEF,连接DEBF,判断四边形EBFD的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A是反比例函数y图象上一点,过点Ax轴的平行线交反比例函数y=﹣的图象于点B,点Cx轴上,且SABC,则k=(  )

A. 6B. 6C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,线段 AB 经过⊙O 的圆心, AC BD 分别与⊙O 相切于点 C D .若 AC =BD = 4 ,∠A=45°,则弧CD的长度为(

A.πB.2πC.2πD.4π

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD 中,对角线 AC BD 相交于点 O ,点 E F 分别为 OB OD 的中点,延长 AE G ,使 EG AE ,连接 CG

1)求证: ABE≌△CDF

2)当 AB AC 满足什么数量关系时,四边形 EGCF 是矩形?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我市某中学学生会在开展厉行勤俭节约,反对铺张浪费的主题教育活动中,在全校范围内随机抽取了若干名学生就某日晚饭浪费饭菜情况进行调查,调查内容分为四种:A.饭和菜全部吃完;B.有剩饭但菜吃完;C.饭吃完但菜有剩;D.饭和菜都有剩.学生会根据统计结果,绘制了如下统计表:根据所给信息,回答下列问题:

选项

频数

频率

A

36

m

B

n

0.2

C

6

0.1

D

6

0.1

(1)统计表中:m=______;n=______

(2)该中学有1800名学生晚饭在校就餐,根据调查结果,估计当天晚饭有多少人能够把饭和菜全部吃完?

(3)为了对同学们浪费的行为进行纠正,校学生会从饭和菜都有剩的甲、乙、丙、丁四名同学中任取2位同学进行批评教育,请用列表法或树状图法求恰好抽到甲和丁的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠ACB90°.小聪同学利用直尺和圆规完成了如下作图:

①分别以点AB为圆心,以大于AB长为半径画弧,两弧交于点MN,过点MN作直线与AB交于点D

②连接CD,以点D为圆心,以一定长为半径画弧,交MN于点E,交CD于点F,以点C为圆心,以同样定长为半径画弧,与CD交于点G,以点G为圆心,以EF长为半径画弧与前弧交于点H.作射线CHAB交于点K,请根据以上操作,解答下列问题

1)由尺规作图可知:直线MN是线段AB   线,∠DCK   

2)若CD5AK2,求CK的长.

查看答案和解析>>

同步练习册答案