【题目】如图AB=CD,AD=BC,过O点的直线交AD于E,交BC于F,图中全等三角形有( )
A. 4对 B. 5对 C. 6对 D. 7对
【答案】C
【解析】
由条件可判定四边形ABCD为平行四边形,则可知O为AC、BD、EF的中点,可知△ABO≌△CDO,△ABC≌△CDA,△AEO≌△CFO,△EOD≌△FOB,△AOD≌△BOC,△ABD≌△CDB,共6组.
在△ABD和△CDB中,
,
∴△ABD≌△CDB(SSS),
同理可得△ABC≌△CDA,
∵AB=CD,AD=BC,
∴四边形ABCD为平行四边形,
∴OA=OC,OB=OD,
在△AOB和△COD中,
,
∴△AOB≌△BOD(SAS),
同理可得△BOC≌△DOA,
由平行四边形的性质可得AD∥BC,
∴∠EAO=∠FCO,∠AEO=∠CFO,
在△AEO和△CFO中,
∴△AEO≌△CFO(AAS),
同理可得△DOE≌△BOF,
所以共有六组.
故答案选C.
科目:初中数学 来源: 题型:
【题目】小明和爸爸周末步行去游泳馆游冰,爸爸先出发了一段时间后小明才出发,途中小明在离家1400米处的报亭休息了一段时间后继续按原来的速度前往游泳馆.两人离家的距离y(米)与小明所走时间x(分钟)之间的函数关系如图所示,请结合图象信息解答下列问题:
(1)小明出发_____分钟后第一次与爸爸相遇;
(2)分别求出爸爸离家的距离y1和小明到达报亭前离家的距离y2与时间x之间的函数关系式;
(3)求小明在报亭休息了多长时间遇到姗姗来迟的爸爸;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,D是BC的中点,过D点的直线GF交AC于F,交AC的平行线BG于G点,DE⊥DF,交AB于点E,连结EG、EF.
(1)求证:BG=CF.
(2)请你判断BE+CF与EF的大小关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某农户种植一种经济作物,总用水量y(m3)与种植时间x(天)之间的函数关系如图所示.
(1)第20天的总用水量为 m3;
(2)当x≥20时,求y与x之间的函数表达式;
(3)种植时间为多少天时,总用水量达到7 000 m3.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=30°,以直角顶点A为圆心,AB长为半径画弧交BC于点D,过D作DE⊥AC于点E.若DE=a,则△ABC的周长用含a的代数式表示为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】计算:
(1)(3x2y)2(﹣15xy3)÷(﹣9x4y2)
(2)(2a﹣3)2﹣(1﹣a)2
(3)先化简,再求值:(2+x)(2﹣x)+(x﹣1)(x+5),其中x=.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,线段AB的两个端点坐标分别为A(1,1),B(2,1),以原点O为位似中心,将线段AB放大后得到线段CD.若CD=2,则端点C的坐标为( )
A.(2,2)
B.(2,4)
C.(3,2)
D.(4,2)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】数学活动课上,小敏.小颖分别画了△ABC和△DEF , 尺寸如图 . 如果两个三角形的面积分别记作S△ABC.S△DEF , 那么它们的大小关系是( )
A.S△ABC>S△DEF
B.S△ABC<S△DEF
C.S△ABC=S△DEF
D.不能确定
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】连接四边形不相邻两个顶点的线段叫做四边形的对角线,如图1,四边形ABCD中线段AC、线段BD就是四边形ABCD 的对角线.把对角线互相垂直的四边形叫做垂美四边形.
(1)概念理解:如图2,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂美四边形吗?请说明理由.
(2)性质探究:试探索垂美四边形ABCD两组对边AB,CD的平方和与BC,AD的平方和之间的数量关系.
猜想结论:(要求用文字语言叙述)______
写出证明过程(先画出图形,写出已知、求证).
(3)问题解决:如图3,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连接CE,BG,GE,已知AC=4,AB=5,求GE长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com