精英家教网 > 初中数学 > 题目详情

【题目】七(1)班的学习小组学习“线段中点内容时,得到一个很有意思的结论,请跟随他们一起思考.

1)发现:

如图1,线段,点在线段上,当点是线段和线段的中点时,线段的长为_________;若点在线段的延长线上,其他条件不变(请在图2中按题目要求将图补充完整),得到的线段与线段之间的数量关系为_________.

2)应用:

如图3,现有长为40米的拔河比赛专用绳,其左右两端各有一段()磨损了,磨损后的麻绳不再符合比赛要求. 已知磨损的麻绳总长度不足20. 小明认为只利用麻绳和一把剪刀(剪刀只用于剪断麻绳)就可以得到一条长20米的拔河比赛专用绳. 小明所在学习小组认为此法可行,于是他们应用“线段中点”的结论很快做出了符合要求的专用绳,请你尝试着“复原”他们的做法:

①在图中标出点、点的位置,并简述画图方法;

②请说明①题中所标示点的理由.

【答案】16;补图见解析, 2见解析(答案不唯一)②见解析.

【解析】

1)如图1,根据线段中点的定义表示出ECFC的长,则EF=EC+FC=AB,得解;如图2,由EF=EC-FC=AB,得解;

2)①如图3,在CD上取一点M,使CM=CAFBM的中点,点E与点C重合;
②只要证明CF=20,点F在线段CD上即可.

解:(1)点在线段上时,

因为点E是线段AC的中点,所以CE=AC
因为点F是线段BC的中点,所以CF=BC
所以EF=CE+CF=AC+BC=AB
AB=12,所以EF=6

当点在线段的延长线上时,如图2,

此时,EF=EC-FCAC-BC=AB.

答案为:6EF=AB.

2

3

如图,在上取一点,使的中点,点与点重合. (答案不唯一)

②因为的中点,所以.

因为

所以.

因为米,所以.

因为米,米,

所以.

因为点与点重合,米,

所以米,所以点落在线段.

所以满足条件.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图本题图①,在等腰Rt中, ,为线段上一点,以为半径作于点,连接,线段的中点分别为.

(1)试探究是什么特殊三角形?说明理由;

(2)将绕点逆时针方向旋转到图②的位置,上述结论是否成立?并证明结论

(3),绕点在平面内自由旋转,求的面积y的最大值与最小值的差.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABO的直径,AMBN分别与O相切于点ABCDAMBN于点DCDO平分ADC.

1)求证:CDO的切线;

2)设AD4ABx (x > 0)BCy (y > 0). y关于x的函数解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图, 已知抛物线经过A(-2,0)、B(4,0)、C(0,4)三点.

(1)求此抛物线的解析式;

(2)此抛物线有最大值还是最小值?请求出其最大或最小值;

(3)若点D(2,m)在此抛物线上,在y轴的正半轴上是否存在点P,使得△BDP是等腰三角形?若存在,请求出所有符合条件的P点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx﹣4a经过A(﹣1,0)、C(0,4)两点,与x轴交于另一点B.

(1)求抛物线的解析式;

(2)求抛物线的顶点坐标

(3)已知点D(m,m+1)在第一象限的抛物线上,求点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方m处,过了2s后,测得小汽车与车速检测仪间距离为m,这辆小汽车超速了吗?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图在ABCADE中,∠BAC=DAE=90°AB=ACAD=AE,点CDE三点在同一条直线上,连结BDBE.以下四个结论:①BD=CEBDCE③∠ACE+DBC=45°④∠ACE=DBC其中结论正确的个数有(

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,世博园段的浦江两岸互相平行,CD是浦西江边间隔200m的两个场馆.海宝在浦东江边的宝钢大舞台A处,测得∠DAB=30°, 然后沿江边走了500m到达世博文化中心B处,测得∠CBF=60°, 求世博园段黄浦江的宽度(结果可保留根号).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在正方形ABCD中,点E在边CD上,AQ⊥BE于点Q,DP⊥AQ于点P.

(1)求证:AP=BQ;

(2)在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ的长.

查看答案和解析>>

同步练习册答案