【题目】某餐厅中,一张桌子可坐6人,有以下两种摆放方式:
(1)当有n张桌子时,两种摆放方式各能坐多少人?
(2)一天中午餐厅要接待70位顾客共同就餐,但餐厅只有18张这样的餐桌,若你是这个餐厅的经理,你打算选择哪种方式来摆放餐桌,为什么?
【答案】(1)当有n张桌子时,第一种摆放方式能坐人,第二种摆放方式能坐人;(2)选择第一种摆放方式来摆放餐桌,见解析
【解析】
(1)分别探索出当有n张桌子时,第一种摆放方式和第二种摆放方式能坐的人数即可;
(2)将n=18代入(1)中代数式,然后比较大小即可判断.
解:(1)第一种摆放方式中:一张桌子可坐6=(4×1+2)人;
两张桌子可坐10=(4×2+2)人;
三张桌子可坐14=(4×3+2)人;
∴第一种摆放方式,当有n张桌子时,能坐人;
第二种摆放方式中:一张桌子可坐6=(2×1+4)人;
两张桌子可坐8=(2×2+4)人;
三张桌子可坐10=(2×3+4)人;
∴第二种摆放方式中:当有n张桌子时,能坐人.
(2)当时,第一种摆放方式能坐人
第二种摆放方式能坐人
因为
所以应该选择第一种摆放方式来摆放餐桌.
科目:初中数学 来源: 题型:
【题目】某蔬菜加工公司先后两批次收购蒜薹(tái)共100吨.第一批蒜薹价格为4000元/吨;因蒜薹大量上市,第二批价格跌至1000元/吨.这两批蒜薹共用去16万元.
(1)求两批次购进蒜薹各多少吨;
(2)公司收购后对蒜薹进行加工,分为粗加工和精加工两种:粗加工每吨利润400元,精加工每吨利润1000元.要求精加工数量不多于粗加工数量的三倍.为获得最大利润,精加工数量应为多少吨?最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知∠AOB=20°,∠AOC=4∠AOB,OD平分∠AOB,OM平分∠AOC,则∠MOD的度数是_____________________度
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】分别把下列各数填在所属的集合内:
+29,﹣3,80%,﹣1,0.3,0,﹣31415,6,
(1)正数集合:{_____…};
(2)负数集合:{_____…};
(3)整数集合:{_____…};
(4)分数集合:{_____…}.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线y=x与反比例函数y=的图象交于A,B两点,且点A的横坐标为.在坐标轴上找一点C,直线AB上找一点D,在双曲线y=找一点E,若以O,C,D,E为顶点的四边形是有一组对角为60的菱形,那么符合条件点D的坐标为___.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线与双曲线交于、两点,且点的坐标为,将直线向上平移个单位,交双曲线于点,交轴于点,且的面积是.给出以下结论:(1);(2)点的坐标是;(3);(4).其中正确的结论有
A. 1个B. 2个C. 3个D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在锐角△ABC中,∠ABC=45°,高线AD、BE相交于点F.
(1)判断BF与AC的数量关系并说明理由;
(2)如图2,将△ACD沿线段AD对折,点C落在BD上的点M,AM与BE相交于点N,当DE∥AM时,判断NE与AC的数量关系并说明理由.
【答案】(1)BF=AC,理由见解析;(2)NE=AC,理由见解析.
【解析】试题分析:(1)如图1,证明△ADC≌△BDF(AAS),可得BF=AC;
(2)如图2,由折叠得:MD=DC,先根据三角形中位线的推论可得:AE=EC,由线段垂直平分线的性质得:AB=BC,则∠ABE=∠CBE,结合(1)得:△BDF≌△ADM,则∠DBF=∠MAD,最后证明∠ANE=∠NAE=45°,得AE=EN,所以EN=AC.
试题解析:
(1)BF=AC,理由是:
如图1,∵AD⊥BC,BE⊥AC,
∴∠ADB=∠AEF=90°,
∵∠ABC=45°,
∴△ABD是等腰直角三角形,
∴AD=BD,
∵∠AFE=∠BFD,
∴∠DAC=∠EBC,
在△ADC和△BDF中,
∵,
∴△ADC≌△BDF(AAS),
∴BF=AC;
(2)NE=AC,理由是:
如图2,由折叠得:MD=DC,
∵DE∥AM,
∴AE=EC,
∵BE⊥AC,
∴AB=BC,
∴∠ABE=∠CBE,
由(1)得:△ADC≌△BDF,
∵△ADC≌△ADM,
∴△BDF≌△ADM,
∴∠DBF=∠MAD,
∵∠DBA=∠BAD=45°,
∴∠DBA﹣∠DBF=∠BAD﹣∠MAD,
即∠ABE=∠BAN,
∵∠ANE=∠ABE+∠BAN=2∠ABE,
∠NAE=2∠NAD=2∠CBE,
∴∠ANE=∠NAE=45°,
∴AE=EN,
∴EN=AC.
【题型】解答题
【结束】
17
【题目】已知x1,x2是方程2x2﹣2nx+n(n+4)=0的两根,且(x1﹣1)(x2﹣1)﹣1=,求n的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某区为争创全国文明卫生城,2016年区政府对区绿化工程投入的资金是2000万元,2018年投的资金是2420万元,且2017年和2018年,每年投入资金的年平均增长率相同.
(1)求该区对区绿化工程投入资金的年平均增长率;
(2)若投入资金的年平均增长率不变,那么该区在2020年需投入资金多少万元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知:在直角坐标系中,A(﹣2,4)B(﹣4,2);A1、B1是A、B关于y轴的对称点;
(1)请在图中画出A、B关于原点O的对称点A2,B2(保留痕迹,不写作法);并直接写出A1、A2、B1、B2的坐标.
(2)试问:在x轴上是否存在一点C,使△A1B1C的周长最小,若存在求C点的坐标,若不存在说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com