精英家教网 > 初中数学 > 题目详情

如图,点G、E、F分别在平行四边形ABCD的边AD、DC和BC上,DG=DC,CE=CF,点P是射线GC上一点,连接FP,EP.
求证:FP=EP.

证明:∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠DGC=∠GCB(两直线平行,内错角相等),
∵DG=DC,
∴∠DGC=∠DCG,
∴∠DCG=∠GCB,
∵∠DCG+∠DCP=180°,∠GCB+∠FCP=180°,
∴∠DCP=∠FCP,
∵在△PCF和△PCE中

∴△PCF≌△PCE(SAS),
∴PF=PE.
分析:根据平行四边形的性质推出∠DGC=∠GCB,根据等腰三角形性质求出∠DGC=∠DCG,推出∠DCG=∠GCB,根据等角的补角相等求出∠DCP=∠FCP,根据SAS证出△PCF≌△PCE即可.
点评:本题考查了平行四边形性质,等腰三角形的性质,全等三角形的性质和判定,等角的补角相等,主要考查学生的推理能力,题目比较好,综合性比较强.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,点D,E,F分别是△ABC(AB>AC)各边的中点,下列说法中,错误的是(  )
A、EF与AD互相平分
B、EF=
1
2
BC
C、AD平分∠BAC
D、△DEF∽△ACB

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,点D,E,F分别是△ABC(AB>AC)各边的中点,下列说法中,错误的是(  )
A、AD平分∠BAC
B、EF=
1
2
BC
C、EF与AD互相平分
D、△DFE是△ABC的位似图形

查看答案和解析>>

科目:初中数学 来源: 题型:

5、如图,点D、E、F分别是△ABC的边AB、BC、AC的中点,连接DE、EF,要使四边形ADEF为正方形,还需增加条件:
△ABC为等腰直角三角形,且AB=AC,∠A=90°(此题答案不唯一).

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,点D,E,F分别是△ABC的三边AB,AC,BC上的中点,如果△ABC的面积是18cm2,则△DBF的面积是
 
cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,点D、E、F分别是△ABC三边AB、BC、AC的中点,则△DEF的周长是△ABC周长的(  )

查看答案和解析>>

同步练习册答案