精英家教网 > 初中数学 > 题目详情

【题目】如图,在□ABCD中,AB=3AD=6EBC的中点,

1)求

2)求DE的边长.

【答案】130°;(2

【解析】

(1)由平行四边形的性质、中点的性质求出EC=CD,根据∠BCD求出

2)作CFED,利用三角函数求出EF的长度即可知DE的长.

1)∵四边形ABCD是平行四边形,

∴BC=AD=6,CD=AB=3,∠ABC+∠C=180°,

∴∠BCD=120°,

∵E为BC的中点,

EC=CD=3,

∴△ECD是等腰三角形,

∵∠ECD=120°,EC=ED,

∴∠CED=

2)作CFED,垂足为F

RtCEF中,∠CFE=90°EC=3,∠CED=30°

EF=EC×cos30°=,

DE=2EF=.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某区为了了解九年级学生身体素质情况,从中随机抽取了部分学生进行测试,测试成绩的最高分为30分,最低分为23分,按成绩由低到高分成五组(每组教据可含最大值,不含最小值),绘制的频率分布直方图中缺少了28.5~30分的一组(如图所示),已知27~28.5分一组的频率为0.31,且这组学生人数比25.5~27分这组学生多了28人,根据图示及上述相关信息解答下列问题:

1)写出从左至右前三组的频率;

2)在图中补画28.5~30分一组的小矩形;

3)求测试时抽样的人数;

4)求测试成绩的中位数落在第几组;

5)如果全区共有3600名九年级学生,估计成绩大于27分的学生约有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知四边形中,.

1)求四边形的面积

2)动点从点出发,以每秒1个单位长度的速度,沿方向,向点运动;动点从点出发,以每秒1个单位长度的速度,沿方向,向点运动,过点于点.若两点同时出发,当其中一点到达目的地时整个运动随之结束,设运动时间为.问:

①当点上运动时,是否存在这样的,使得直线将四边形的周长平分?若存在,请求出的值;若不存在,请说明理由;

②在运动过程中,是否存在这样的,使得以为顶点的三角形与相似?若存在,请求出所有符合条件的的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是O的直径,弦BC=2cm,F是弦BC的中点,ABC=60°.若动点E以2cm/s的速度从A点出发沿着ABA方向运动,设运动时间为t(s)(0≤t<3),连接EF,当t为_____s时,BEF是直角三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx+c)的图像如图所示,则下列结论:(1ac>0;2)方程ax2+bx+c=0的两根之积小于0;(3a+b+c<0;(4ac+b+1 <0,其中正确的个数(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】玛丽和冯刚做一种游戏,在一个不透明的布袋里装有4个大小、质地均相同小球,球上分别标有数字1234,随机从布袋中摸出一个小球,记下数字后放回布袋里,再随机从布袋中摸出一个小球,若这两个小球上的数字之和能被2整除的概率大则玛丽赢;若两个小球上的数字之和能被3整除的概率大则冯刚赢。这个游戏双方公平吗?请列表格或画树状图说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等边三角形ABC边长是定值,点O是它的外心,过点O任意作一条直线分别交AB,BC于点D,E.将BDE沿直线DE折叠,得到B′DE,若B′D,B′E分别交AC于点F,G,连接OF,OG,则下列判断错误的是(  )

A. ADF≌△CGE

B. B′FG的周长是一个定值

C. 四边形FOEC的面积是一个定值

D. 四边形OGB'F的面积是一个定值

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线轴于两点,交轴于点,过抛物线的顶点轴的垂线,垂足为点,作直线.

1)求直线的解析式;

2)点为第一象限内直线上的一点,连接,取的中点,作射线交抛物线于点,设线段的长为,点的横坐标为,求之间的函数关系式(不要求写出自变量的取值范围);

3)在(2)的条件下,在线段上有一点,连接,线段交线段于点,若,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=x+m图象过点A(10),交y轴于点y轴负半轴上一点,且,过两点的抛物线交直线于点,且CD//x轴.

1)求这条抛物线的解析式;

2)观察图象,写出使一次函数值小于二次函数值时的取值范围;

3)在题中的抛物线上是否存在一点,使得为直角?若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案