【题目】在△ABC中,∠BAC=90°,AB=AC.
(I)如图,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC.
求证:(1)△BAD≌△CAE;
(2)BC=DC+EC.
(Ⅱ)如图,D为△ABC外一点,且∠ADC=45°,仍将线段AD绕点A逆时针旋转90°得到AE,连接EC,ED.
(1)△BAD≌△CAE的结论是否仍然成立?并请你说明理由;
(2)若BD=9,CD=3,求AD的长.
【答案】(I)(1)见解析;(2)见解析;(Ⅱ)(1)仍然成立;理由见解析(2)若AD=6.
【解析】
(Ⅰ)(1)根据全等三角形的判定定理即可得到结论;
(2)根据全等三角形的性质即可得到结论;
(Ⅱ)(1)根据全等三角形的判定定理即可得到△BAD≌△CAE;
(2)根据全等三角形的性质得到BD=CE=9,根据勾股定理计算即可.
解:(Ⅰ)(1)∵∠BAC=∠DAE=90°,
∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,
在△BAD和△CAE中,,
∴△BAD≌△CAE(SAS);
(2)∵△BAD≌△CAE
∴BD=CE,
∴BC=BD+CD=EC+CD;
(Ⅱ)(1)△BAD≌△CAE的结论仍然成立,
理由:∵将线段AD绕点A逆时针旋转90°得到AE,
∴△ADE是等腰直角三角形,
∴AE=AD,
∵∠BAC+∠CAD=∠DAE+∠CAD,
即∠BAD=∠CAE,
在△BAD与△CAE中,,
∴△BAD≌△CAE(SAS);
(2)∵△BAD≌△CAE,
∴BD=CE=9,
∵∠ADC=45°,∠EDA=45°,
∴∠EDC=90°,
∴DE==6,
∵∠DAE=90°,
∴AD=AE=DE=6.
科目:初中数学 来源: 题型:
【题目】如图,直线AB和抛物线的交点是A(0,-3),B(5,9),已知抛物线的顶点D的横坐标是2.
(1)求抛物线的解析式及顶点坐标;
(2)在轴上是否存在一点C,与A,B组成等腰三角形?若存在,求出点C的坐标,若不存在,请说明理由;
(3)在直线AB的下方抛物线上找一点P,连接PA,PB使得△PAB的面积最大,并求出这个最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=ax+图象与x轴,y轴分别相交于A、B两点,与反比例函数y=(k≠0)的图象相交于点E、F,过F作y轴的垂线,垂足为点C,已知点A(﹣3,0),点F(3,t).
(1)求一次函数和反比例函数的表达式;
(2)求点E的坐标并求△EOF的面积;
(3)结合该图象写出满足不等式﹣ax≤的解集.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,∠C=72°,△ABC绕点B逆时针旋转,当点C的对应点C1落在边AC上时,设AC的对应边A1C1与AB的交点为E,则∠BEC1=___°.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2+bx+c的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,2)与(0,3)之间(不包括这两点),对称轴为直线x=2.下列结论:abc<0;②9a+3b+c>0;③若点M(,y1),点N(,y2)是函数图象上的两点,则y1<y2;④﹣<a<﹣.其中正确结论有( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一个不透明的袋中装有5个只有颜色不同的球,其中3个黄球,2个黑球.
(1)求从袋中同时摸出的两个球都是黄球的概率;
(2)现将黑球和白球若干个(黑球个数是白球个数的2倍)放入袋中,搅匀后,若从袋中摸出一个球是黑球的概率是,求放入袋中的黑球的个数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形的顶点、分别在平面直角坐标系的轴和轴上,且,顶点在第一象限,经过矩形对角线交点的反比例函数的图像分别与、交于点、,若的面积是2,则的值为________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:在平面直角坐标系中,图形G上点P(x,y)的纵坐标y与其横坐标x的差y﹣x称为P点的“坐标差”,而图形G上所有点的“坐标差”中的最大值称为图形G的“特征值”.
(1)①点A(1,3)的“坐标差”为 ;
②抛物线y=﹣x2+3x+4的“特征值”为 ;
(2)某二次函数y=﹣x2+bx+c(c≠0)的“特征值”为﹣1,点B(m,0)与点C分别是此二次函数的图象与x轴和y轴的交点,且点B与点C的“坐标差”相等.
①直接写出m= ;(用含c的式子表示)
②求此二次函数的表达式.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com