精英家教网 > 初中数学 > 题目详情

【题目】如图,已知四边形ABCD是梯形,AD∥BC,∠A=90°,BC=BD,CE⊥BD,垂足为E.
(1)求证:△ABD≌△ECB;
(2)若∠DBC=50°,求∠DCE的度数.

【答案】
(1)证明:∵AD∥BC,

∴∠ADB=∠EBC.

∵CE⊥BD,∠A=90°,

∴∠A=∠CEB,

在△ABD和△ECB中,

∵∠A=∠CEB,AD∥BC,

∴∠ADB=∠DBC,

∴∠ABD=∠BCE,

又∵BC=BD

∴△ABD≌△ECB


(2)解:∵∠DBC=50°,BC=BD,

∴∠EDC= (180°﹣50°)=65°,

又∵CE⊥BD,

∴∠CED=90°,

∴∠DCE=90°﹣∠EDC=90°﹣65°=25°.


【解析】(1)因为这两个三角形是直角三角形,BC=BD,因为AD∥BC,还能推出∠ADB=∠EBC,从而能证明:△ABD≌△ECB.(2)因为∠DBC=50°,BC=BD,可求出∠BDC的度数,进而求出∠DCE的度数.
【考点精析】关于本题考查的直角梯形,需要了解一腰垂直于底的梯形是直角梯形才能得出正确答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】ABCDEF六个球队进行单循环比赛(每两队之间赛一场,比赛结果必须分出胜负),每天同时在三个场地各进行一场比赛,前四天的积分表如下(EF的积分被遮挡):

1)根据积分榜,胜一场积几分,负一场积几分?

2)若E队前四天积分比F队多4分,问EF两队前四天的战绩分别是几胜几负?

3)已知第一天BD对阵,第二天CE对阵,第三天DF对阵,第四天BC对阵,试分析第五天A和谁对阵比赛.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市射击队为从甲、乙两名运动员中选拔一人参加省比赛,对他们进行了六次测试,测试成绩如下表单位:环

1

2

3

4

5

6

10

9

8

8

10

9

10

10

8

10

7

9

根据表格中的数据,可计算出甲、乙两人的平均成绩都是9环.

1)分别计算甲、乙六次测试成绩的方差;

2)根据数据分析的知识,你认为选______名队员参赛.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合与实践

问题情境:在数学活动课上,我们给出如下定义:顺次连按任意一个四边形各边中点所得的四边形叫中点四边形.如图(1),在四边形ABCD中,点EFGH分别为边ABBCCDDA的中点.试说明中点四边形EFGH是平行四边形.

探究展示:勤奋小组的解题思路:

反思交流:

1上述解题思路中的依据1”依据2”分别是什么?

依据1   ;依据2   

连接AC,若ACBD时,则中点四边形EFGH的形状为   

创新小组受到勤奋小组的启发,继续探究:

2)如图(2),点P是四边形ABCD内一点,且满足PAPBPCPDAPBCPD,点EFGH分别为边ABBCCDDA的中点,猜想中点四边形EFGH的形状,并说明理由;

3)若改变(2)中的条件,使APBCPD90°,其它条件不变,则中点四边形EFGH的形状为   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知直线ABCDMN分别在直线ABCDE为平面内一点.

(1)如图1BMEEEND的数量关系为 (直接写出答案)

(2)如图2BMEEF平分∠MENNP平分∠ENDEQNP求∠FEQ的度数(用用含m的式子表示)

(3)如图3GCD上一点BMNEMNGEKGEMEHMNAB于点H探究∠GEKBMNGEH之间的数量关系(用含n的式子表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,自来水厂A和村庄B在小河l的两侧,现要在A,B间铺设一条输水管道.为了搞好工程预算,需测算出A,B间的距离.一小船在点P处测得A在正北方向,B位于南偏东24.5°方向,前行1200m,到达点Q处,测得A位于北偏西49°方向,B位于南偏西41°方向.

(1)线段BQ与PQ是否相等?请说明理由;
(2)求A,B间的距离.(参考数据cos41°≈0.75)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知平行四边形中,垂直平分线段连接

1)求证:四边形是菱形;

2)若的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下面材料:

小明遇到这样一个问题: 如图1,在矩形中,对角线相交于点,且,点分别是的中点,连接所

求证:是等边三角形.

小明经探究发现,连接(如图2),从而可证,使问题得到解决.

(1)请你按照小明的探究思路,完成他的证明过程;

参考小明思考问题的方法或用其他的方法,解决下面的问题:

(2)如图3,在四边形中, , 对角线相交于点,且(),点分别是的中点,连接

①否存在与相等的线段?若存在,请找出并证明;若不存在,说明理由.

②求的度数.(用含的式子表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等腰ΔABC中,∠CAB=90°AB=AC,PΔABC内的一点,且PA=AQ=1,CQ=BP=3,CP=,求∠APC的大小.(提示:连接PQ)

查看答案和解析>>

同步练习册答案