精英家教网 > 初中数学 > 题目详情

【题目】某商场销售一种商品,进价为每个20元,规定每个商品售价不低于进价,且不高于60元,经调查发现,每天的销售量y(个)与每个商品的售价x(元)满足一次函数关系,其部分数据如下所示:

每个商品的售价x(元)

30

40

50

每天的销售量y(个)

100

80

60

(1)求yx之间的函数表达式;

(2)设商场每天获得的总利润为w(元),求wx之间的函数表达式;

(3)不考虑其他因素,当商品的售价为多少元时,商场每天获得的总利润最大,最大利润是多少?

【答案】(1)y=-2x+160;(2)w=-2x2+200x-3200;(3)当商品的售价为50元时,商场每天获得的总利润最大,最大利润是1800.

【解析】

每天的销售量y(个)与每个商品的售价x(元)满足一次函数关系,用待定系数法求解;

根据利润的表达式:利润=售价-进价求解;

根据(2)的表达式是二次函数,利用二次函数的最值求解.

1)设yx之间的函数解析式为y=kx+b

解得

yx之间的函数表达式是y=-2x+160

2)由题意可得,w=x-20)(-2x+160=-2x2+200x-3200

wx之间的函数表达式是w=-2x2+200x-3200

3)∵w=-2x2+200x-3200=-2x-502+180020≤x≤60

∴当20≤x≤50时,wx的增大而增大;

50≤x≤60时,wx的增大而减小;

x=50时,w取得最大值,此时w=1800

即当商品的售价为50元时,商场每天获得的总利润最大,最大利润是1800

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,的直径,是弧(异于)上两点,是弧上一动点,的角平分线交于点的平分线交于点.当点从点运动到点时,则两点的运动路径长的比是(

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,阳光通过窗口照到教室内,竖直窗框在地面上留下2.1 m长的影子如图所示,已知窗框的影子DE的点E到窗下墙脚的距离CE=3.9 m,窗口底边离地面的距离BC=1.2 m,试求窗口的高度(即AB的值).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形OABC中,点O为原点,点A的坐标为(0,8),点C的坐标为(6,0).抛物线y=﹣x2+bx+c经过点A、C,与AB交于点D.

(1)求抛物线的函数解析式;

(2)P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,设CP=m,CPQ的面积为S.

①求S关于m的函数表达式;

②当S最大时,在抛物线y=﹣x2+bx+c的对称轴l上,若存在点F,使△DFQ为直角三角形,请直接写出所有符合条件的点F的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一次函数y=kx﹣1的图象经过点P,且y的值随x值的增大而增大,则点P的坐标可以为(  )

A. (﹣5,3) B. (1,﹣3) C. (2,2) D. (5,﹣1)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在四边形ABCD中,∠ABC90°CDADAD2CD22AB2

1)求证:ABBC

2)当BEADE时,试证明:BEAECD

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】现场学习:在ABC中,AB、BC、AC三边的长分别为,求这个三角形的面积.小华同学在解答这道题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点ABC(即ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求ABC的高,而借用网格就能计算出它的面积.这种方法叫做构图法.

(1)ABC的面积为: _________ 

(2)若DEF三边的长分别为,请在图1的正方形网格中画出相应的DEF,并利用构图法求出它的面积;

(3)如图2,一个六边形的花坛被分割成7个部分,其中正方形PRBA,RQDC,QPFE的面积分别为13,10,17,且PQR、BCR、DEQ、AFP的面积相等,求六边形花坛ABCDEF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下面各问题中给出的两个变量xy,其中yx的函数的是

x是正方形的边长,y是这个正方形的面积;

x是矩形的一边长,y是这个矩形的周长;

x是一个正数,y是这个正数的平方根;

x是一个正数,y是这个正数的算术平方根.

A. ①②③B. ①②④C. ②④D. ①④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面真角坐标系中, 两点, 若在轴上取一点 使点到点和点的距离之和最小,则点的坐标是__________

查看答案和解析>>

同步练习册答案