精英家教网 > 初中数学 > 题目详情
如图,点A在反比例函数y=
a
x
(x>0)上,点B在反比例函数y=
b
x
(x>0)上,实数b>a,若AB∥y轴,点C是y轴上的任意一点,则△CAB的面积为
1
2
(b-a)
1
2
(b-a)
分析:可以设出A的坐标,△ABC的面积即可利用A的坐标表示,据此即可求解.
解答:解:∵点A在反比例函数y=
a
x
(x>0)上,点B在反比例函数y=
b
x
(x>0)上,AB∥y轴,
∴设A的坐标是(m,
a
m
),B的坐标是(m,
b
m
),
∴AB=
b
m
-
a
m

则△ABC的AB边上的高等于m.
则△ABC的面积=
1
2
b
m
-
a
m
)•m=
1
2
(b-a).
故答案是:
1
2
(b-a).
点评:本题主要考查了反比例函数的系数k的几何意义.解题时要注意已知条件“AB∥y轴”,这告诉我们点A、B的横坐标相同.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与反比例函数y=
m
x
(m≠0)的图象相交于A、B两点,且点B的纵坐标为-
1
2
,过点A作AC⊥x轴于点C,AC=1,OC=2.
求:(1)求反比例函数和一次函数的关系式;
(2)直接写出反比例函数值大于一次函数值时x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,点D在反比例函y=
k
x
(k>0)
的图象上,△ODC是以CO为斜边的等腰直角三角形,且C (4,0).
(1)求k的值;
(2)将线段DC平移至线段D1C1,D1在x轴的负半轴上,C1在双曲线y=
k
x
上,求点D1的坐标;
(3)如图2,双曲线y=
k
x
 的图象上有两个动点A(a,m),B(3a,b),(a>0),求S△OAB的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图1,点D在反比例函数学公式的图象上,△ODC是以CO为斜边的等腰直角三角形,且C (4,0).
(1)求k的值;
(2)将线段DC平移至线段D1C1,D1在x轴的负半轴上,C1在双曲线数学公式上,求点D1的坐标;
(3)如图2,双曲线数学公式 的图象上有两个动点A(a,m),B(3a,b),(a>0),求S△OAB的值.

查看答案和解析>>

科目:初中数学 来源:2011年江苏省宿迁市中考数学二模试卷(解析版) 题型:解答题

如图,已知在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与反比例函数(m≠0)的图象相交于A、B两点,且点B的纵坐标为,过点A作AC⊥x轴于点C,AC=1,OC=2.
求:(1)求反比例函数和一次函数的关系式;
(2)直接写出反比例函数值大于一次函数值时x的取值范围.

查看答案和解析>>

科目:初中数学 来源:2012-2013学年江苏省兴化市九年级一模数学试卷(解析版) 题型:填空题

如图,Rt△AOB中,O为坐标原点,∠AOB=90°,OA∶OB=1∶2,如果点A在反比例函

数y=(x>0)的图像 上运动,那么点B在函数          (填函数解析式)的图像上运动.

 

查看答案和解析>>

同步练习册答案