精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,C=60°,BC=3厘米,AC=4厘米,点P从点B出发,沿BCA以每秒1厘米的速度匀速运动到点A.设点P的运动时间为xBP两点间的距离为y厘米

小新根据学习函数的经验,对函数随自变量的变化而变化的规律进行了探究

下面是小新的探究过程,请补充完整:

(1)通过取点、画图、测量,得到了xy的几组值,如下表:

x(s)

0

1

2

3

4

5

6

7

y(cm)

0

1.0

2.0

3.0

2.7

2.7

m

3.6

经测量m的值是(保留一位小数)

(2)建立平面直角坐标系,描出表格中所有各对对应值为坐标的点,画出该函数的图象;

(3)结合画出的函数图象,解决问题:在曲线部分的最低点时,在△ABC中画出点P所在的位置.

【答案】答案见解析

【解析】分析:(1)找到点P在第6秒的位置用测量的方法,即可得出答案

(2)利用描点法,画出函数图象即可;

(3)过点B作出AC的垂线,垂足即为点P的位置.

详解:(1)∵点P的速度为每秒1厘米

6秒时,点P所走的路程为6×1=6,

BC+CP=6,

BC=3,

CP=3,

即可确定点P的位置,测量BPBP=3.0;

(2)如图所示;

(3)如图所示,

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】先阅读下面的文字,然后按要求解题:

例:1+2+3+ … +100=

如果一个一个顺次相加显然太繁琐,我们仔细分析这100个连续自然数的规律和特点,可以发现运用加法运算律,是可以大大简化计算,提高运算速度的.

因为1+100=2+99=3+98= … =50+51=101

所以将所给算式中各加数经过交换、结合以后,可以很快求出结果.

解:1+2+3+ … +100

=(1+100)+(2+99)+(3+98)+ … +(50+51)

=101×____________

=____________ .

(1)补全例题的解题过程;

(2)计算:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图菱形ABCD的对角线相交于点O,AC=2,BD=2将菱形按如图方式折叠使点B与点O重合折痕为EF,则五边形AEFCD的周长为_____________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形OABC∽正方形ODEF,它们是以原点O为位似中心的位似图形,位似比为1 A的坐标为(01),则点E的坐标是________________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,.

1)试说明成立的理由.(完成下面的填空)

证明:

,(________________

,(已知)

,(________________

.________________

2)若平分平分,且,求的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,点M的坐标为(x1,y1),点N的坐标为(x2,y2),且x1≠x2,y1≠y2,以MN为边构造菱形,若该菱形的两条对角线分别平行于x轴,y轴,则称该菱形为边的“坐标菱形”.

(1)已知点A(2,0),B(0,2),则以AB为边的“坐标菱形”的最小内角为   

(2)若点C(1,2),点D在直线y=5上,以CD为边的“坐标菱形”为正方形,求直线CD 表达式;

(3)⊙O的半径为,点P的坐标为(3,m).若在O上存在一点Q,使得以QP为边的“坐标菱形”为正方形,求m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点BE分别在ACDF上,AF分别交BDCE于点MN,∠A=∠F,∠1=∠2.

(1)求证:四边形BCED是平行四边形;

(2)已知DE=2,连接BN,若BN平分DBC,求CN的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】古希腊著名的毕达哥拉斯学派把13610…这样的数称为三角形数,而把14916…这样的数称为正方形数.从图中可以发现,任何一个大于1正方形数都可以看作两个相邻三角形数之和.下列等式中,符合这一规律的是(  )

A.133+10B.259+16C.3615+21D.4918+31

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD和正方形CEFG边长分别为ab,正方形CEFG绕点C旋转,给出下列结论:①BE=DG;BEDG;DE2+BG2=2a2+2b2,其中正确结论有( )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

同步练习册答案