【题目】如图,正方形ABCD和正方形CEFG边长分别为a和b,正方形CEFG绕点C旋转,给出下列结论:①BE=DG;②BE⊥DG;③DE2+BG2=2a2+2b2,其中正确结论有( )
A. 0个 B. 1个 C. 2个 D. 3个
【答案】D
【解析】分析:由四边形ABCD与四边形EFGC都为正方形,得到四条边相等,四个角为直角,利用SAS得到三角形BCE与三角形DCG全等,利用全等三角形对应边相等即可得到BE=DG,利用全等三角形对应角相等得到∠CBM=∠MDO,利用等角的余角相等及直角的定义得到∠BOD为直角,利用勾股定理求出所求式子的值即可.
详解:①∵四边形ABCD和EFGC都为正方形,
∴CB=CD,CE=CG,∠BCD=∠ECG=90°,
∴∠BCD+∠DCE=∠ECG+∠DCE,即∠BCE=∠DCG.
在△BCE和△DCG中,CB=CD,∠BCE=∠DCG,CE=CG,
∴△BCE≌△DCG,
∴BE=DG,
故结论①正确.
②如图所示,设BE交DC于点M,交DG于点O.
由①可知,△BCE≌△DCG,
∴∠CBE=∠CDG,即∠CBM=∠MDO.
又∵∠BMC=∠DMO,∠MCB=180°-∠CBM-∠BMC,∠DOM=180°-∠CDG-∠MDO,
∴∠DOM=∠MCB=90°,
∴BE⊥DG.
故②结论正确.
③如图所示,连接BD、EG,
由②知,BE⊥DG,
则在Rt△ODE中,DE2=OD2+OE2,
在Rt△BOG中,BG2=OG2+OB2,
在Rt△OBD中,BD2=OD2+OB2,
在Rt△OEG中,EG2=OE2+OG2,
∴DE2+BG2=(OD2+OE2)+(OB2+OG2)=(OD2+OB2)+(OE2+OG2)=BD2+EG2.
在Rt△BCD中,BD2=BC2+CD2=2a2,
在Rt△CEG中,EG2=CG2+CE2=2b2,
∴BG2+DE2=2a2+2b2.
故③结论正确.
故选:D.
科目:初中数学 来源: 题型:
【题目】从2013年1月7日起,中国中东部大部分地区持续出现雾霾天气.某市记者为了了解”雾霾天气的主要原因“,随机调查了该市部分市民,并对调查结果进行整理.绘制了如下尚不完整的统计图表.
组别 | 观点 | 频数(人数) |
A | 大气气压低,空气不流动 | 80 |
B | 地面灰尘大,空气湿度低 | m |
C | 汽车尾气排放 | n |
D | 工厂造成的污染 | 120 |
E | 其他 | 60 |
请根据图表中提供的信息解答下列问题:
(1)填空:m= , n= . 扇形统计图中E组所占的百分比为%;
(2)若该市人口约有100万人,请你估计其中持D组“观点”的市民人数;
(3)若在这次接受调查的市民中,随机抽查一人,则此人持C组“观点”的概率是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将△ABC纸片沿DE折叠,使点A落在点A'处,且A'B平分∠ABC,A'C平分∠ACB,若∠BA'C=110°,则∠1+∠2的度数为( )
A. 80°; B. 90°; C. 100°; D. 110°;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°.
(1)请你数一数,图中有多少个小于平角的角;
(2)求出∠BOD的度数;
(3)请通过计算说明OE是否平分∠BOC.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,I点为△ABC的内心,D点在BC上,且ID⊥BC,若∠B=44°,∠C=56°,则∠AID的度数为何?( )
A. 174 B. 176 C. 178 D. 180
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知点A,B在数轴上对应的数分别为a,b,且|a+4|+(b-2)2=0,点A,B之间的距离记作AB.
(1)线段AB的长为 ;(直接写出结果)
(2)若动点P在数轴上对应的数为x.
①当PA+PB的值最小时,则奇数x的值为 ;(直接写出结果)
②当PA+PB=14时,求x的值;
(3)当动点P在点A的左侧,M,N分别是PA,PB的中点,当点P在A的左侧移动时,聪明的小明同学在计算PM+PN和PN-PM的值时发现:其中只有一个的值是不变的,请你判断出哪一个的值不变,并求这个值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A是x轴上的一个动点,点C在y轴上,以AC为对角线画正方形ABCD,已知点C的坐标是,设点A的坐标为.
当时,正方形ABCD的边长______.
连结OD,当时,______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠AOC为直角,OC是∠BOD的平分线,且∠AOB=57.65°,则∠AOD的度数是( )
A. 122°20′ B. 122°21′ C. 122°22′ D. 122°23′
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=ax2+bx+2经过A(﹣1,0),B(2,0),C三点.直线y=mx+ 交抛物线于A,Q两点,点P是抛物线上直线AQ上方的一个动点,作PF⊥x轴,垂足为F,交AQ于点N.
(1)求抛物线的解析式;
(2)如图①,当点P运动到什么位置时,线段PN=2NF,求出此时点P的坐标;
(3)如图②,线段AC的垂直平分线交x轴于点E,垂足为D,点M为抛物线的顶点,在直线DE上是否存在一点G,使△CMG的周长最小?若存在,请求出点G的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com