精英家教网 > 初中数学 > 题目详情

【题目】如图,I点为△ABC的内心,D点在BC上,且IDBC,若∠B=44°,C=56°,则∠AID的度数为何?(  )

A. 174 B. 176 C. 178 D. 180

【答案】A

【解析】

连接CI,利用三角形内角和定理可求出∠BAC的度数,由I点为ABC的内心,可得出∠CAI、ACI、DCI的度数,利用三角形内角和定理可得出∠AIC、CID的度数,再由∠AID=AIC+CID即可求出∠AID的度数.

连接CI,如图所示.

ABC中,∠B=44°,ACB=56°,

∴∠BAC=180°﹣B﹣ACB=80°.

I点为ABC的内心,

∴∠CAI=BAC=40°,ACI=DCI=ACB=28°,

∴∠AIC=180°﹣CAI﹣ACI=112°,

IDBC,

∴∠CID=90°﹣DCI=62°,

∴∠AID=AIC+CID=112°+62°=174°.

故选:A.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,抛物线的顶点为P(﹣2,2),与y轴交于点A(0,3).若平移该抛物线使其顶点P沿直线移动到点P′(2,﹣2),点A的对应点为A′,则抛物线上PA段扫过的区域(阴影部分)的面积为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点.点M是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD、AN.
(1)求证:四边形AMDN是平行四边形;
(2)填空:①当AM的值为时,四边形AMDN是矩形; ②当AM的值为时,四边形AMDN是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,CB切⊙O于点B,CA交⊙O于点D且AB为⊙O的直径,点E是 上异于点A、D的一点.若∠C=40°,则∠E的度数为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,是将长方形纸牌ABCD沿着BD折叠得到的,图中包括实线、虚线在内共有全等三角形______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD和正方形CEFG边长分别为ab,正方形CEFG绕点C旋转,给出下列结论:①BE=DG;BEDG;DE2+BG2=2a2+2b2,其中正确结论有( )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】写出所有满足下列条件的数:

(1)大于-且小于的所有整数;

(2)小于的所有正整数;

(3)绝对值小于的所有整数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,L1,L2分别表示一种白炽灯和一种节能灯的费用y(费用=灯的售价+电费,单位:元)与照明时间x(h)的函数图像,假设两种灯的使用寿命都是2000h,照明效果一样.

(1)根据图像分别求出L1,L2的函数关系式.

(2)当照明时间为多少时,两种灯的费用相等?

(3)小亮房间计划照明2500h,他买了一个白炽灯和一个节能灯,请你帮他设计最省钱的用灯方法(直接给出答案,不必写出解答过程).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知双曲线y= 经过点B(3 ,1),点A是双曲线第三象限上的动点,过B作BC⊥y轴,垂足为C,连接AC.
(1)求k的值;
(2)若△ABC的面积为6 ,求直线AB的解析式;
(3)在(2)的条件下,写出反比例函数值大于一次函数值时x的取值范围.

查看答案和解析>>

同步练习册答案