精英家教网 > 初中数学 > 题目详情

【题目】下列图形都是由同样大小的菱形按照一定规律组成的,请根据排列规律完成下列问题:

1)填写下表:

图形序号

菱形个数(个)

3

7

________

________

……

……

2)根据表中规律猜想,图n中菱形的个数_______(用含n的式子表示);

3)是否存在一个图形恰好由111个菱形组成?若存在,求出图的序号;若不存在,说明理由.

【答案】1)③ 13,④ 21;(2)图n中菱形的个数3)存在,是图⑩.

【解析】

1)观察图形,数出图③、图④中菱形的个数;

2)设图n中菱形的个数为ann为正整数),观察图形,找出部分图形中菱形的个数,根据菱形个数的变化(分成上下两部分,根据两部分的变化)可找出变化规律“an=n2+n+1n为正整数)

3)由(2)的结论结合菱形的个数为111,即可得出关于n的一元二次方程,解之取其正值(正整数值)即可得出结论.

1)观察图形,可知:图③中有13个菱形,图④中有21个菱形.

故答案为:1321

2)设图n中菱形的个数为ann为正整数),

观察图形,可知:a1=3=1+2a2=7=4+3a3=13=9+4a4=21=16+5

an=n2+n+1n为正整数).

3)依题意,得:n2+n+1=111

解得:n1=-11(舍去),a2=10

∴存在一个图形恰好由111个菱形组成,该图形的序号为⑩.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某家具商场计划购进某种餐桌、餐椅进行销售,有关信息如表:

原进价(元/张)

零售价(元/张)

成套售价(元/套)

餐桌

a

270

500

餐椅

a110

70

已知用600元购进的餐桌数量与用160元购进的餐椅数量相同.

1)求表中a的值;

2)若该商场购进餐椅的数量是餐桌数量的5倍还多20张,且餐桌和餐椅的总数量不超过200张.该商场计划将一半的餐桌成套(一张餐桌和四张餐椅配成一套)销售,其余餐桌、餐椅以零售方式销售.请问怎样进货,才能获得最大利润?最大利润是多少?

3)由于原材料价格上涨,每张餐桌和餐椅的进价都上涨了10元,但销售价格保持不变.商场购进了餐桌和餐椅共200张,应怎样安排成套销售的销售量(至少10套以上),使得实际全部售出后,最大利润与(2)中相同?请求出进货方案和销售方案.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知已知抛物线经过原点O和x轴上一点A(4,0),抛物线顶点为E,它的对称轴与x轴交于点D,直线y=﹣2x﹣1经过抛物线上一点B(﹣2,m)且与y轴交于点C,与抛物线的对称轴交于点F.

(1)求m的值及该抛物线的解析式

(2)P(x,y)是抛物线上的一点,若S△ADP=S△ADC,求出所有符合条件的点P的坐标.

(3)点Q是平面内任意一点,点M从点F出发,沿对称轴向上以每秒1个单位长度的速度匀速运动,设点M的运动时间为t秒,是否能使以Q、A、E、M四点为顶点的四边形是菱形?若能,请直接写出点M的运动时间t的值;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx+ca≠0)经过点A1-1)、B33),且当1≤x≤3时,-1≤y≤3,则a的取值范围是___________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,DE⊥AB,BF⊥CD,垂足分别为E,F.

(1)求证:△ADE≌△CBF;

(2)求证:四边形BFDE为矩形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一束光线从点O射出,照在经过A10)、B01)的镜面上的点C,经AB反射后,又照到竖立在y轴位置的镜面上的D点,最后经y轴再反射的光线恰好经过点A,则点C的坐标为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中, ,点两边的距离相等,且

(1)先用尺规作出符合要求的点(保留作图痕迹,不需要写作法),然后判断△ABP的形状,并说明理由;

(2)设,试用的代数式表示的周长和面积;

(3)设交于点,试探索当边的长度变化时,的值是否发生变化,若不变,试求出这个不变的值,若变化,试说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】 在平面直角坐标系中,有两条抛物线关于x轴对称,且它们的顶点相距6个单位长度,若其中一条抛物线的函数表达式为y=﹣x2+4x+2m,则m的值是(  )

A.B.C.1D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,OABC的外接圆,点OBC边上,BAC的平分线交O于点D,连接BDCD,过点DPDBCAB的延长线相交于点P

(1)求证:PDO的切线;

(2)求证:BD2PBAC

查看答案和解析>>

同步练习册答案