【题目】已知二次函数y=ax2+bx+c(a≠0)经过点A(1,-1)、B(3,3),且当1≤x≤3时,-1≤y≤3,则a的取值范围是___________
科目:初中数学 来源: 题型:
【题目】如图,在每个小正方形的边长为1的网格中,的顶点,,均在格点上.
(Ⅰ)的长等于________________;
(Ⅱ)在如图所示的网格中,将绕点A旋转,使得点B的对应点落在边上,得到,请用无刻度的直尺,画出,并简要说明这个三角形的各个顶点是如何找到的(不要求证明).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点O为正方形ABCD的中心,BE平分∠DBC交DC于点E,延长BC到点F,使FC=EC,连结DF交BE的延长线于点H,连结OH交DC于点G,连结HC.则以下四个结论中:①OH∥BF,②GH=BC,③OD=BF,④∠CHF=45°。正确结论的个数为( )
A. 4个 B. 3个 C. 2个 D. 1个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等腰直角三角形ABC中,∠ACB=90°,AB=8,点E是AB的中点,以AE为边作等边△ADE(点D与点C分别在AB异侧),连接CD,则△ACD的面积是_________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,直线AB与x轴、y轴分别相交于点A、B,将线段AB绕点A顺时针旋转90°,得到AC,连接BC,将△ABC沿射线BA平移,当点C到达x轴时运动停止.设平移距离为m,平移后的图形在x轴下方部分的面积为S,S关于m的函数图象如图2所示(其中0<m≤a,a<m≤b时,函数的解析式不同).
(1)填空:△ABC的面积为 ;
(2)求直线AB的解析式;
(3)求S关于m的解析式,并写出m的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】茶叶是安徽省主要经济作物之一,2020年新茶上市期间,某茶厂为获得最大利益,根据市场行情,把新茶价格定为400元/kg,并根据历年的相关数据整理出第x天(1≤x≤15,且x为整数)制茶成本(含采摘和加工)和制茶量的相关信息如下表.假定该茶厂每天制作和销售的新茶没有损失,且能在当天全部售出(当天收入=日销售额-日制茶成本)
制茶成本(元/kg) | 150+10x |
制茶量(kg) | 40+4x |
(1)求出该茶厂第10天的收入;
(2)设该茶厂第x天的收入为y(元).试求出y与x之间的函数关系式,并求出y的最大值及此时x的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点(顶点是网格线的交点)和直线l及点O.
(1)画出关于直线l对称的;
(2)连接OA,将OA绕点O顺时针旋转,画出旋转后的线段;
(3)在旋转过程中,当OA与有交点时,旋转角的取值范围为________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图等边的边长为,点,点同时从点出发,点沿以的速度向点运动,点沿以的速度也向点运动,直到到达点时两点都停止运动,若的面积为,点的运动时间为,则下列最能反映与之间函数关系的图象是( )
A.B.
C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线过点,与轴交于点,连接将沿所在的直线翻折,得到连接.
(1)若求抛物线的解析式.
(2)如图1,设的面积为的面积为,若,求的值.
(3)如图2,若点是半径为的上一动点,连接当点运动到某一位置时,的值最大,请求出这个最大值,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com