精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,抛物线过点,与轴交于点,连接沿所在的直线翻折,得到连接

1)若求抛物线的解析式.

2)如图1,设的面积为的面积为,若,求的值.

3)如图2点是半径为上一动点,连接当点运动到某一位置时,的值最大,请求出这个最大值,并说明理由.

【答案】1;(2;(3.理由见解析.

【解析】

1)根据可得C的坐标为(0,1),根据待定系数法,将点C(0,1)代入中,解方程组即可得到abc的值,即可得解;

2)设,,由勾股定理,等积法及锐角三角函数的定义分别求得,从而得到,代入到,得到关于a的方程求解即可;

3)在轴上取点,连接,构造出一对相似三角形,相似比,转化成线段,从而得到,结合图形,运用三角形的三边关系,即可得到当点在同一直线上时,最大,利用勾股定理即可得到CD的值.

1)∵OB=3

OC=1,得C的坐标为(0,1),

将点C(0,1)代入中,

得到 解得:

故函数的解析式为:

于点,由轴对称性,

中,

由面积法:

轴上取点,连接

中,∵PC-PD<CD

当点在同一直线上时,最大,

最大值为.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,按以下步骤作图:

分别以点C和点D为圆心,大于的同样的长为半径作弧,两弧交于MN两点;

作直线MN,交CD于点E,连接BE

若直线MN恰好经过点A,则下列说法错误的是(  )

A.ABC60°

B.

C.AB4,则BE

D.tanCBE

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】数学实践小组想利用镜子的反射测量池塘边一棵树的高度AB.测量和计算的部分步骤如下:

①如图,树与地面垂直,在地面上的点C处放置一块镜子,小明站在BC的延长线上,当小明在镜子中刚好看到树的顶点A时,测得小明到镜子的距离CD2米,小明的眼睛E到地面的距离ED1.5米;

②将镜子从点C沿BC的延长线向后移动10米到点F处,小明向后移动到点H处时,小明的眼睛G又刚好在镜子中看到树的顶点A,这时测得小明到镜子的距离FH3米;

③计算树的高度AB

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,的直径为圆周上两点,且,过点,交的延长线于点

1)求证:切线;

2)填空:①当四边形为菱形,则的度数为________

②当时,四边形的面积为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数的图象过点,对称轴为直线,下列结论中一定正确的是____________(填序号即可)

②若是抛物线上的两点,当时,

③若方程的两根为,且,则

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某社区购买甲、乙两种树苗进行绿化,购买一棵甲种树苗的价钱比购买一棵乙种树苗的价钱多 10 元钱,已知购买 20 棵甲种树苗、30 棵乙种树苗共需 1 200 元钱.

1)求购买一棵甲种、一棵乙种树苗各多少元?

2)社区决定购买甲、乙两种树苗共 400 棵,总费用不超过 10 600 元,那么该社区最多可以购买多少棵甲种树苗?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中, 是平面内不与点重合的任意一点, 连接,将线段绕点逆时针旋转得到线段,连接

1)动手操作

如图1,当时,我们通过用 刻度尺和量角器度量发现:

的值是;直线与直线相交所成的较小角的度数是

请证明以上结论正确.

2)类比探究

如图2,当时,请写出的值及直线与直线相交所成的较小角的度数,并就图2的情形说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合与实践 中,,点为斜边上的动点(不与点重合)

1)操作发现: 如图①,当时,把线段绕点逆时针旋转得到线段,连接

的度数为________

②当________时,四边形为正方形;

2)探究证明: 如图②,当时,把线段绕点逆时针旋转后并延长为原来的两倍, 记为线段,连接

①在点的运动过程中,请判断的大小关系,并证明;

②当时,求证:四边形为矩形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD是矩形,把矩形沿AC折叠,点B落在点E处,AEDC的交点为O,连接DE

(1)求证:ADE≌△CED

(2)求证:DEAC

查看答案和解析>>

同步练习册答案