【题目】茶叶是安徽省主要经济作物之一,2020年新茶上市期间,某茶厂为获得最大利益,根据市场行情,把新茶价格定为400元/kg,并根据历年的相关数据整理出第x天(1≤x≤15,且x为整数)制茶成本(含采摘和加工)和制茶量的相关信息如下表.假定该茶厂每天制作和销售的新茶没有损失,且能在当天全部售出(当天收入=日销售额-日制茶成本)
制茶成本(元/kg) | 150+10x |
制茶量(kg) | 40+4x |
(1)求出该茶厂第10天的收入;
(2)设该茶厂第x天的收入为y(元).试求出y与x之间的函数关系式,并求出y的最大值及此时x的值.
【答案】(1)12000元;(2)当或8时,取得最大值12240
【解析】
(1)将x=10分别代入150+10x,40+4x,可得制茶成本及制茶量,然后根据当天收入=日销售额-日制茶成本可得第七天的收入;
(2)根据利润等于(售价-成本)×制茶量,列出函数关系式并写成顶点式,按照二次函数的性质可得答案.
(1)当x=10时,制茶成本为:150+10x=150+10×10=250(元/千克);
制茶量为:40+4x=40+4×10=80(kg);
该茶厂第10天的收入为:(400-250)×80=12000(元).
∴该茶厂第10天的收入为12000元;
(2)
,且是正整数
当或8时,取得最大值12240
科目:初中数学 来源: 题型:
【题目】如图所示, 在平面直角坐标系中, 边长为的正方形的边在轴上, 交轴于点,一次函数的图像经过点,且与线段始终有交点(含端点),若,则的值可能为( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(2014河南22题)
(1)问题发现
如图①,和均为等边三角形,点A、D、E在同一条直线上,连接BE;
填空:
①的度数为__________;
②线段AD、BE之间的数量关系为__________.
(2)拓展探究
如图②,和均为等腰直角三角形,,点A、D、E在同一条直线上,CM为中DE边上的高,连接BE.请判断的度数及线段CM、AE、BE之间的数量关系,并说明理由;
(3)解决问题
如图③,在正方形ABCD中,,若点P满足,且,请直接写出点A到BP的距离.
图① 图② 图③
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某公司经过市场调查,发现某种运动服的销量与售价是一次函数关系,具体信息如表:
已知该运动服的进价为每件150元.
(1)售价为x元,月销量为y件.
①求y关于x的函数关系式:
②若销售该运动服的月利润为w元,求w关于x的函数关系式,并求月利润最大时的售价;
(2)由于运动服进价降低了a元,商家决定回馈顾客,打折销售,这时月销量与调整后的售价仍满足(1)中函数关系式.结果发现,此时月利润最大时的售价比调整前月利润最大时的售价低15元,则a的值是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx+c(a≠0)经过点A(1,-1)、B(3,3),且当1≤x≤3时,-1≤y≤3,则a的取值范围是___________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx+c(a≠0)经过点A(1,-1)、B(3,3),且当1≤x≤3时,-1≤y≤3,则a的取值范围是___________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,过点A且与x轴平行的直线交抛物线y=(x+1)2于B,C两点,若线段BC的长为6,则点A的坐标为( )
A.(0,1)B.(0,4.5)C.(0,3)D.(0,6)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=(n为常数,且n≠0)的图象在第二象限交于点C.CD⊥x轴,垂足为D,若OB=2OA=3OD=12.
(1)求一次函数与反比例函数的解析式;
(2)记两函数图象的另一个交点为E,求△CDE的面积;
(3)直接写出不等式kx+b≤的解集.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将一张直角三角形纸片放置在平面直角坐标系中,点A、B在x轴上,点C在y轴上,,且,.
(Ⅰ)如图①,求点C的坐标;
(Ⅱ)如图②,沿斜边的中线把这张纸片剪成和两个三角形,将沿直线方向平移(点A、、、B始终在同一直线上),当点与点重合时停止平移,
①如图③,在平移的过程中,与交于点E,与、分别交于点F、P,当点平移到原点时,求的长;
②在平移的过程中,当和重叠部分的面积最大时,求此时点的坐标.(直接写出结论即可)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com