【题目】将一张直角三角形纸片放置在平面直角坐标系中,点A、B在x轴上,点C在y轴上,,且,.
(Ⅰ)如图①,求点C的坐标;
(Ⅱ)如图②,沿斜边的中线把这张纸片剪成和两个三角形,将沿直线方向平移(点A、、、B始终在同一直线上),当点与点重合时停止平移,
①如图③,在平移的过程中,与交于点E,与、分别交于点F、P,当点平移到原点时,求的长;
②在平移的过程中,当和重叠部分的面积最大时,求此时点的坐标.(直接写出结论即可)
【答案】(I)点C的坐标为;(Ⅱ)①,②
【解析】
(Ⅰ)利用勾股定理求出AB=10,再利用面积法求出OC即可得到答案;
(Ⅱ)①根据直角三角形斜边中线等于斜边一半及平行线的性质证得,利用勾股定理求出,即可得到答案;
②设平移的距离为x,和重叠部分面积为y,作的边上的高,设为h,根据,求出,求出,根据二次函数的性质即可得到答案.
解:(I)在中,
∵,
即,
∴.
∴点C的坐标为
(Ⅱ)①∵,
,
又∵,是斜边上的中线,
∴,即,
∴.
∴.
∴
在中,.
∴.
②
如图,设平移的距离为x,
和重叠部分面积为y,由题意得,
,,
又因为,
∴.
∴.
作的边上的高,设为h,
由平移可知.
在和中,,,
∴.
∴.
∴,.
又∵,,
∴.
又∵,,,
∴,,.
∴,
∴.
∴当时,y有最大值8.
此时.
科目:初中数学 来源: 题型:
【题目】茶叶是安徽省主要经济作物之一,2020年新茶上市期间,某茶厂为获得最大利益,根据市场行情,把新茶价格定为400元/kg,并根据历年的相关数据整理出第x天(1≤x≤15,且x为整数)制茶成本(含采摘和加工)和制茶量的相关信息如下表.假定该茶厂每天制作和销售的新茶没有损失,且能在当天全部售出(当天收入=日销售额-日制茶成本)
制茶成本(元/kg) | 150+10x |
制茶量(kg) | 40+4x |
(1)求出该茶厂第10天的收入;
(2)设该茶厂第x天的收入为y(元).试求出y与x之间的函数关系式,并求出y的最大值及此时x的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了解某校九年级学生的体质健康状况,随机抽取了该校九年级学生的10%进行测试,将这些学生的测试成绩(x)分为四个等级:优秀;良好;及格;不及格,并绘制成以下两幅统计图.
根据以上信息,解答下列问题:
(1)在抽取的学生中不及格人数所占的百分比是______;
(2)计算所抽取学生测试成绩的平均分;
(3)若不及格学生的人数为2人,请估算出该校九年级学生中优秀等级的人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2+bx+c(a≠0)的图象过点(﹣2,0),对称轴为直x=1线,下列结论中:①abc>0;②若A(x1,m),B(x2,m)是抛物线上的两点,当x=x1+x2时,y=c;③若方程a(x+2)(4﹣x)=﹣2的两根为x1,x2,且x1<x2,则﹣2<x1<x2<4;④(a+c)2>b2;一定正确的是______(填序号即可).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线过点,与轴交于点,连接将沿所在的直线翻折,得到连接.
(1)若求抛物线的解析式.
(2)如图1,设的面积为的面积为,若,求的值.
(3)如图2,若点是半径为的上一动点,连接当点运动到某一位置时,的值最大,请求出这个最大值,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】解不等式组
请结合题意填空,完成本题的解答.
(Ⅰ)解不等式①,得_____________;
(Ⅱ)解不等式②,得________________;
(Ⅲ)把不等式①和②的解集在数轴上表示出来:
(Ⅳ)原不等式组的解集为_______________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】水城门位于淀浦河和漕港河三叉口,是环城水系公园淀浦河梦蝶岛区域重要的标志性景观.在课外实践活动中,某校九年级数学兴趣小组决定测量该水城门的高.他们的操作方法如下:如图,先在D处测得点A的仰角为20°,再往水城门的方向前进13米至C处,测得点A的仰角为31°(点D、C、B在一直线上),求该水城门AB的高.(精确到0.1米)
(参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36,sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】解不等式组
请结合题意填空,完成本题的解答.
(Ⅰ)解不等式①,得______________________;
(Ⅱ)解不等式②,得____________________;
(Ⅲ)把不等式①和②的解集在数轴上表示出来:
(Ⅳ)原不等式组的解集为_______________________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com