【题目】阅读下面的操作规则
第一次操作:对任意相邻的两个数,都用左边的数减去右边的数,所得的差写在这两个数之间,得到一组依次排列的新数串;第二次操作:对上一次操作得到的新数串,仍按照第一次操作进行,又得到一组依次排列的新数串;……这样依次操作下去
(1)对依次排列的3个数:﹣2,3,6,按上面的规则进行操作,
①齐第一次操作后得到的新数串:﹣2, ,3, ,6此次增加的新数之和为 ;
②出第二次操作后得到的新数中,并求第二次操作后再次增加的新数之和;
(2)对依次排列的3个数:1,3,﹣,按上述规则操作,直接写出第三次操作后再次增加的新数之和是 .
【答案】(1)①-5,-3,-8;②-8;(2)
【解析】
根据左边的数减去右边的数,所得的差写在这两个数之间,得到一组依次排列的新数串,然后计算即可.
解:(1)①﹣2﹣3=﹣5,3﹣6=﹣3,
(﹣5)+(﹣3)=﹣8,
故答案为﹣5,﹣3,﹣8;
②第二次操作后得到的新数串是
﹣2,3,﹣5,﹣8,3,6,﹣3.﹣9,6,
第二次操作后再次增加的新数之和是3+(﹣8)+6+(﹣9)=﹣8,
(2)第一次操作后得到的新数串是:1,﹣2,3, ,﹣
第二次操作后得到的新数串是:1,3,﹣2,﹣5,3,﹣,,4,﹣,
第三次操作后得到的新数串是:1,﹣2,3,5,﹣2,3,﹣5,﹣8,3,,﹣,﹣4,,,4,,﹣,
﹣2+5+3+(﹣8)++(﹣4)+(﹣)+()=,
故答案为.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为 ( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形纸片ABCD,AB=4,BC=3,点P在BC边上,将△CDP沿DP折叠,点C落在点E处,PE、DE分别交AB于点O、F,且OP=OF,则cos∠ADF的值为( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,直线y=﹣x+6分别与x轴、y轴交于点A,B.当点P在线段AB(点P不与A,B重合)上运动时,在坐标系内存在一点N,使得以O,B,P,N为顶点的四边形为菱形.请直接写出N点坐标_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“今有邑,东西七里,南北九里,各开中门,出东门一十五里有木,问:出南门几何步而见木?”这段话摘自《九章算术》.意思是说:如图,矩形城池ABCD,东边城墙AB长9里,南边城墙AD长7里,东门点E、南门点F分别是AB、AD中点,EG⊥AB,FH⊥AD,EG=15里,HG经过A点,则FH=( )
A.1.2 里B.1.5 里C.1.05 里D.1.02 里
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在四边形ABCD中,AD∥BC,CD⊥BC,∠ABC=60°,且AD=12,BC=18.动点P从点A出发,以每秒2个单位长度的速度向点D运动,设运动时间为t秒(0<t≤6)
(1)当t=6时,cos∠BPC= ;
(2)当△BPC的外接圆与AD相切时,求t的值;
(3)在点P运动过程中,cos∠BPC是否存在最小值?若存在,请求出这个最小值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,AB=,∠A=120°,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK的最小值为____________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△OAB中,∠AOB=90°,AO=2,BO=4.将△OAB绕顶点O按顺时针方向旋转到△OA1B1处,此时线段OB1与AB的交点D恰好为线段AB的中点,线段A1B1与OA交于点E,则图中阴影部分的面积__.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O 是△ABC 的外接圆,O 点在 BC 边上,∠BAC 的平分线交⊙O 于点 D,连接 BD、CD,过点 D 作 BC 的平行线,与 AB 的延长线相交于点 P.
(1)求证:PD 是⊙O 的切线;
(2)求证:△PBD∽△DCA.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com