【题目】如图,圆形纸片⊙O半径为,先在其内剪出2个边长相等的最大正方形,再在剩余部分剪出2个边长相等的最大正方形,则第二次剪出的正方形的边长是______.
【答案】.
【解析】
连接AB、OE,作OF⊥DE于F,设BC=x,DE=y,由题意得:∠C=90°,由圆周角定理得出AB是直径,AB=2OA=2,在Rt△ABC中,由勾股定理得出方程,得出x2=4,x=2,在Rt△OEF中,由勾股定理得出方程,解得:y=,即可得出结果.
解:如图所示:连接AB、OE,作OF⊥DE于F,则DF=EF,
设BC=x,DE=y,
由题意得:∠C=90°,∴AB是直径,∴AB=2OA=2,
在Rt△ABC中,由勾股定理得:x2+(2x)2=(2)2,
∴x2=4,x=2,
在Rt△OEF中,由勾股定理得:(×2+y)2+(y)2=()2,
解得:y=(负值已舍去),
∴第二次剪出的正方形的边长是,
故答案为:.
科目:初中数学 来源: 题型:
【题目】如图,抛物线y1=a(x+2)2+m过原点,与抛物线y2=(x﹣3)2+n交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于点B,C.下列结论:①两条抛物线的对称轴距离为5;②x=0时,y2=5;③当x>3时,y1﹣y2>0;④y轴是线段BC的中垂线.正确结论是________(填写正确结论的序号).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD是正方形,BE⊥BF,BE=BF,EF与BC交于点G.
(1)求证:AE=CF;
(2)若∠ABE=55°,求∠EGC的大小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了了解某校新初三暑期阅读课外书的情况,某研究小组随机采访该校新九年级的20位同学,得到这20位同学暑期读课外书册数的统计如下:
册数 | 0 | 2 | 3 | 5 | 6 | 8 | 10 |
人数 | 1 | 2 | 4 | 8 | 2 | 2 | 1 |
(1)这20位同学暑期看课外书册数的中位数是 册,众数是 册,平均数是 册。
(2)若小明同学把册数中的数据“8”看成了“7”,那么中位数,众数,平均数中不受影响的是。
(3)若该校有600名新初三学生,试估计该校新初三学生暑期阅读课外书的总册数。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,、、分别是菱形ABCD的两条对角线长和边长,这时我们把关于的形如“”的一元二次方程称为“菱系一元二次方程”.请解决下列问题:
(1)填空:①当,时, .
②用含,的代数式表示值, .
(2)求证:关于的“菱系一元二次方程”必有实数根;
(3)若是“菱系一元二次方程”的一个根,且菱形的面积是25,BE是菱形ABCD的AD边上的高,求BE的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O与Rt△ABC的斜边AB相切于点D,与直角边AC相交于E、F两点,连结DE,已知∠B=30°,⊙O的半径为12,弧DE的长度为4π.
(1)求证:DE∥BC;
(2)若AF=CE,求线段BC的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,将△DEF与△ABC重合在一起,△ABC不动,△DEF运动,并满足:点E在边BC上沿B到C的方向运动,且DE始终经过点A,EF与AC交于M点.
(1)求证:△ABE∽△ECM;
(2)探究:在△DEF运动过程中,重叠部分能否构成等腰三角形?若能,求出BE的长;若不能,请说明理由;
(3)当线段BE为何值时,线段AM最短,最短是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=6cm,BC=12cm,点P从点A出发沿AB以1cm/s的速度向点B移动;同时,点Q从点B出发沿BC以2cm/s的速度向点C移动.设运动时间为t秒.
(1)当t=2时,△DPQ的面积为 cm2;
(2)在运动过程中△DPQ的面积能否为26cm2?如果能,求出t的值,若不能,请说明理由;
(3)运动过程中,当 A、P、Q、D四点恰好在同一个圆上时,求t的值;
(4)运动过程中,当以Q为圆心,QP为半径的圆,与矩形ABCD的边共有4个交点时,直接写出t的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com