精英家教网 > 初中数学 > 题目详情

【题目】某学校从甲、乙两名班主任中选拔一名参加教育局组织的班主任技能比赛,选拔内容分案例分析、班会设计、情景问答三个项目,选拔比赛结束后,统计的这两位班主任成绩并制成了如图所示的条形统计图:

1)乙班主任三个项目的成绩中位数是______________________

2)用6张相同的卡片分别写上甲、乙两名班主任的六项成绩,洗匀后,从中任意抽取一张,求抽到的卡片写有“80”的概率;

3)若按照图2所示的权重比进行计算,选拔分数最高的一名班主任参加比赛,应确定哪名班主任获得参赛资格,说明理由.

【答案】(1)80;(2);(3)甲教师获得参赛资格.

【解析】

1)直接从三个数据中找到中位数即可;
2)利用概率公式求解即可;
3)分别按照不同的权,利用加权平均数求解即可.

解:(1)乙班主任的得分排序为:758082,中位数为80

2)六张卡片中写着80的共两张,因此(抽到的卡片写有80

3)甲教师得分:(分);

乙教师的得分:(分)

∴甲教师获得参赛资格.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=,∠B=45°,∠C=60°

1)求BC边上的高线长.

2)点E为线段AB的中点,点F在边AC上,连结EF,沿EF将△AEF折叠得到△PEF

①如图2,当点P落在BC上时,求∠AEP的度数.

②如图3,连结AP,当PFAC时,求AP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,为原点,抛物线经过点,对称轴为直线,点关于直线的对称点为点.过点作直线轴,交轴于点.

(Ⅰ)求该抛物线的解析式及对称轴;

(Ⅱ)点轴上,当的值最小时,求点的坐标;

(Ⅲ)抛物线上是否存在点,使得,若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠C90°AC8BC6DAB边上的动点,过点DDEAB交边AC于点E,过点EEFDEBC于点F,连接DF

1)当AD4时,求EF的长度;

2)求DEF的面积的最大值;

3)设ODF的中点,随着点D的运动,则点O的运动路径的长度为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等边三角形中,在边上,.为边上一动点(不与点重合),连接关于的轴对称图形为

1)当点上时,求证:

2)当三点共线时,求的长;

3)连接的面积为的面积为是否存在最大值?若存在,请直接写出的最大值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】正方形的边长为4,点在对角线上(可与点重合),,点在正方形的边上.下面四个结论中,

①存在无数个四边形是平行四边形;

②存在无数个四边形是菱形;

③存在无数个四边形是矩形;

④至少存在一个四边形是正方形.

所有正确结论的序号是_______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtAOB中,∠AOB90°,OA3OB2,将RtAOB绕点O顺时针旋转90°后得RtFOE,将线段EF绕点E逆时针旋转90°后得线段ED,分别以OE为圆心,OAED长为半径画弧AF和弧DF,连接AD,则图中阴影部分面积是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知的圆心为点,抛物线yax2x+c过点A,与交于BC两点,连接ABAC,且ABACBC两点的纵坐标分别是21

1)求BC点坐标和抛物线的解析式;

2)直线ykx+1经过点B,与x轴交于点D.点E(与点D不重合)在该直线上,且ADAE,请判断点E是否在此抛物线上,并说明理由;

3)如果直线yk1x1与⊙A相切,请直接写出满足此条件的直线解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为提高饮水质量越来越多的居民开始选购家用净水器.一商家抓住商机从厂家购进了AB两种型号家用净水器共160A型号家用净水器进价是150/B型号家用净水器进价是350/购进两种型号的家用净水器共用去36000

1)求AB两种型号家用净水器各购进了多少台

2)为使每台B型号家用净水器的毛利润是A型号的2且保证售完这160台家用净水器的毛利润不低于11000求每台A型号家用净水器的售价至少是多少元?(注毛利润=售价﹣进价)

查看答案和解析>>

同步练习册答案