精英家教网 > 初中数学 > 题目详情

【题目】在平面直角坐标系中,为原点,抛物线经过点,对称轴为直线,点关于直线的对称点为点.过点作直线轴,交轴于点.

(Ⅰ)求该抛物线的解析式及对称轴;

(Ⅱ)点轴上,当的值最小时,求点的坐标;

(Ⅲ)抛物线上是否存在点,使得,若存在,求出点的坐标;若不存在,请说明理由.

【答案】(Ⅰ)抛物线的解析式为;抛物线的对称轴为直线;(Ⅱ)点坐标为;(Ⅲ)存在,点坐标为,理由见解析

【解析】

(Ⅰ)将点代入二次函数的解析式,即可求出a,再根据对称轴的公式即可求解.

(Ⅱ)先求出B点胡坐标,要求胡最小值,只需找到B关于轴的对称点,则直线Ay轴的交点就是点P,根据待定系数法求出AB1的解析式,令y=0,即可求出P点的坐标.

(Ⅲ)设点Q的坐标,并求出△AOQ面积,从而得到△AOQ面积,根据Q点胡不同位置进行分类,用m及割补法求出面积方程,即可求解.

(Ⅰ)∵经过点

,解得

∴抛物线的解析式为

∴抛物线的对称轴为直线.

(Ⅱ)∵点,对称轴为

∴点关于对称轴的对称点点坐标为.

作点关于轴的对称点,得

设直线AB1的解析式为

把点,点代入得

解得,∴.

∴直线轴的交点即为.

点坐标为.

(Ⅲ)∵轴,∴

又∵,∴.

点坐标为

如图情况一,作,交延长线于点

化简整理得

解得.

如图情况二,作,交延长线于点,交轴于点

化简整理得

解得

点坐标为

∴抛物线上存在点,使得.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】新冠肺炎疫情防控期间,学校为做好预防性消毒工作,开学初购进两种消毒液,其中消毒液的单价比消毒液的单价多元,用元购买消毒液的数量是用元购买消毒液数量的倍.

1)求两种消毒液的单价;

2)学校准备用不多于元的资金购买两种消毒液共桶,问最多购买消毒液多少桶?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了让学生更好地树立安全第一,预防为主的思想,某学校开展了“2020校园预防新冠肺炎知识竞赛活动,若让知识竞赛的成绩分为:A(优秀)、B(良好)、C(合格)、D(不合格)四个等级,张老师从中抽取若干名学生的成绩进行统计,并将统计结果绘制成如图所示的扇形和条形统计图,请结合图中所给信息回答下列问题:

1)本次被调查的对象共有 人;被调查者不合格 人;

2)将条形统计图补充完整;

3)假设这所学校有2000名学生,请据此估计良好的学生有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】央视“经典咏流传”开播以来受到社会广泛关注,我市某校就“中华文化我传承——地方戏曲进校园”的喜爱情况进行了随机调查,对收集的信息进行统计,绘制了下面两副尚不完整的统计图,请你根据统计图所提供的信息解答下列问题:

图中A表示“很喜欢”,B表示“喜欢”,C表示“一般”,D表示“不喜欢”

1)被调查的总人数是________人,扇形统计图中C部分所对应的扇形圆心角的度数为______

2)补全条形统计图;

3)若该校共有学生1800人,请根据上述调查结果,估计该校学生中D类有______人;

4)在抽取的A5人中,刚好有3个女生2个男生,从中随机抽取两个同学担任两角色,用树形图或列表法求出被抽到的两个学生性别相同的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校学生会干部对全校师生倡导的“武汉加油”的自愿捐款活动进行抽样调查,得到一组学生捐款情况的数据,对学校部分捐款人数进行调查和分组统计后,将数据整理成如图所示的统计图(图中信息不完整).已知AB两组捐款人数的比为15

组别

捐款额x(元)

人数

A

1x10

a

B

10x20

100

C

20x30

D

30x40

E

40x50

请结合以上信息解答下列问题.

1a   ,本次调查样本的容量是   

2)先求出C组的人数,再补全“捐款人数分组统计图1”;

3)根据统计情况,估计该校参加捐款的5000名学生有多少人捐款在2050元之间.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】八年级(1)班研究性学习小组为研究全校同学课外阅读情况,在全校随机邀请了部分同学参与问卷调查,统计同学们一个月阅读课外书的数量,并绘制了如下的统计图1和图2,请根据图中相关信息,解决下列问题:

(Ⅰ)图1的值为____________,共有____________名同学参与问卷调查;

(Ⅱ)求统计的这组数据的平均数、众数和中位数;

(Ⅲ)全校共有学生1500人,根据样本数据,估计该校学生一个月阅读2本课外书的人数约为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2020蓉漂云招聘活动在425日正式启动,共发布了岗位13198个.某网络公司招聘一名高级网络工程师,应聘者小魏参加笔试和面试,成绩(100分制)如表所示:

笔试

面试

成绩

98

评委1

评委2

评委3

评委4

评委5

评委6

评委

7

94

95

92

99

98

97

96

其中规定:面试得分中去掉一个最高分和一个最低分,余下的面试得分的平均值作为应聘者的面试成绩.

1)请计算小魏的面试成绩;

2)如果面试成绩与笔试成绩按64的比例确定,请计算出小魏的最终成绩.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学校从甲、乙两名班主任中选拔一名参加教育局组织的班主任技能比赛,选拔内容分案例分析、班会设计、情景问答三个项目,选拔比赛结束后,统计的这两位班主任成绩并制成了如图所示的条形统计图:

1)乙班主任三个项目的成绩中位数是______________________

2)用6张相同的卡片分别写上甲、乙两名班主任的六项成绩,洗匀后,从中任意抽取一张,求抽到的卡片写有“80”的概率;

3)若按照图2所示的权重比进行计算,选拔分数最高的一名班主任参加比赛,应确定哪名班主任获得参赛资格,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知正方形的边长为,点分别在边上,且相交于点,下列结论:①;②;③;④的面积等于四边形的面积,其中正确的有(

A.B.C.D.

查看答案和解析>>

同步练习册答案