精英家教网 > 初中数学 > 题目详情

【题目】移动通信公司建设的钢架信号塔(如图1),它的一个侧面的示意图(如图2).CD是等腰三角形ABC底边上的高,分别过点A、点B作两腰的垂线段,垂足分别为B1A1,再过A1B1分别作两腰的垂线段所得的垂足为B2A2,用同样的作法依次得到垂足B3A3,….若AB3米,sinα,则水平钢条A2B2的长度为(  )

A. B. 2C. D.

【答案】C

【解析】

RtACB1中,由sinα,可以假设CB14kACBC5k,在RtCA2B1中,sinα,可得CA2,根据A2B2AB,可得,由此即可解决问题.

RtACB1中,∵sinα

∴可以假设CB14kACBC5k

RtCA2B1中,sinα

CA2

A2B2AB

(米),

故选C

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD,两条对角线相交于O点,过点OAC的垂线EF,分别交ADBCEF点,连结CE,若OCcmCD4cm,则DE的长为(

A.cmB.5cmC.3cmD.2cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数 (是常数,)的图象如图所示,下列结论:①;②;③;④;⑤,其中错误的结论有( )个.

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,OAC的中点,过点O的直线分别与ABCD交于点EF,连接BFAC于点M,连接DEBO.若∠COB60°FOFC,则下列结论:①FBOCOMCM②△EOB≌△CMB③四边形EBFD是菱形;④MBOE32.其中正确结论的个数是(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线y=ax2+bx+2经过点A(10)和点B(40),且与y轴交于点C,点D的坐标为(20),点P(mn)是该抛物线上的一个动点,连接CACDPDPB

(1)求该抛物线的解析式;

(2)当△PDB的面积等于△CAD的面积时,求点P的坐标;

(3)m0n0时,过点P作直线PEy轴于点E交直线BC于点F,过点FFGx轴于点G,连接EG,请直接写出随着点P的运动,线段EG的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线yax2+bx+c的对称轴为x=﹣1,且过点(﹣30),(0,﹣3).

1)求抛物线的表达式.

2)已知点(mk)和点(nk)在此抛物线上,其中mn,请判断关于t的方程t2+mt+n0是否有实数根,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为推进课改,王老师把班级里60名学生分成若干小组,每小组只能是5人或6人,则有几种分组方案(  )

A. 4B. 3C. 2D. 1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠BAC=90°,AB=AC=3,点DBC上且BD=2CDEF分别在ABAC上运动且始终保持∠EDF=45°,设BE=xCF=y,则yx之间的函数关系用图象表示为:(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(发现)如图,点EF分别在正方形ABCD的边BCCD上,连接EF.因为AB=AD,所以把ΔABEA逆时针旋转90°至ΔADG,可使ABAD重合.因为∠CDA=B=90°,所以∠FDG=180°,所以FDG共线.

如果__________(填一个条件),可得ΔAEF≌ΔAGF.经过进一步研究我们可以发现:当BEEFFD满足__________时,∠EAF=45°.

(应用)

如图,在矩形ABCD中,AB=6AD=m,点E在边BC上,且BE=2

1)若m=8,点F在边DC上,且∠EAF=45°(如图),求DF的长;

2)若点F在边DC上,且∠EAF=45°,求m的取值范围.

查看答案和解析>>

同步练习册答案