精英家教网 > 初中数学 > 题目详情

【题目】如图1,将正方形置于平面直角坐标系中,其中边在轴上,其余各边均与坐标轴平行.直线沿轴的负方向以每秒1个单位的速度平移,在平移的过程中,该直线被正方形的边所截得的线段长为,平移的时间为(秒),的函数图象如图2所示,则图1中的点的坐标为__________,图2中的值为__________.

【答案】 (1,0) 5

【解析】令直线y=x-3=0,解得x=3,即可得直线y=x-3x轴的交点坐标为(30,根据图可知,开始平移2s后直线到达点A,所以点A横坐标为3-2=1,所以点A坐标为10;由图象2可知,直线y=x-3平移12s时,正好经过点C,此时平移后的直线与x轴交点的横坐标为(-90),所以点A到这个交点的距离为10,即可得AD=5,根据勾股定理求得BD=5,当y=x-3平移到BD的位置时m最大,即m最大为5,所以b=5.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,.把一条长为2019个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A-B-C-D-A…的规律绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是__________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线l1:y=﹣x+1与x轴,y轴分别交于点A和点B,直线l2:y=kx(k≠0)与直线l1在第一象限交于点C.若∠BOC=∠BCO,则k的值为(  )

A. B. C. D. 2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】国庆期间,某电影院装修后重新开业,试营业期间统计发现,影院每天售出的电影票张数y(张)与电影票售价(元/张)之间满足一次函数关系: 是整数,影院每天运营成本为1600元,设影院每天的利润为w(元)(利润=票房收入运营成本).

1)试求w之间的函数关系式;

2)影院将电影票售价定为多少时,每天获利最大?最大利润是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在下列条件中,不能作为判断ABD≌△BAC的条件是( )

A. D=C,BAD=ABC B. BAD=ABC,ABD=BAC

C. BD=AC,BAD=ABC D. AD=BC,BD=AC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线分别与x轴,y轴相交于A,B两点,0为坐标原点,A点的坐标为(4,0)

(1)k的值;

(2)过线段AB上一点P(不与端点重合)x轴,y轴的垂线,乖足分别为M,N.当长方形PMON的周长是10时,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】说理填空:如图,点EDC的中点,EC=EB,∠CDA=120°DF//BE,且DF平分∠CDA,若△BCE的周长为18cm,求DC的长.

解: 因为DF平分∠CDA,(已知)

所以∠FDC=_________.____________________

因为∠CDA=120°,(已知)所以∠FDC=______°.

因为DF//BE,(已知)

所以∠FDC=_________=60°.____________________________________

又因为EC=EB,(已知)

所以△BCE为等边三角形.________________________________________

因为△BCE的周长为18cm,(已知) 所以BE=EC=BC=6 cm.

因为点EDC的中点,(已知) 所以DC=2EC=12 cm .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将一张矩形纸片沿着AE折叠后,点D恰好与BC边上的点F重合,已知AB6cmBC10cm,则EC的长度为_____cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】9分)如图,已知点BECF在同一直线上,AB=DE∠A=∠DAC∥DF

求证:(1△ABC≌△DEF; (2BE=CF

查看答案和解析>>

同步练习册答案