【题目】将数轴按如图所示从某一点开始折出一个等边,设点表示的数为,点表示的数为,点表示的数为,若将向右滚动,则的值等于_____;数字对应的点将与的顶点______重合.
【答案】
【解析】
根据等边三角形ABC,利用边长相等得出-4-(2x+1)=2x+1-(x-3),求出x即可;
再利用数字2018对应的点与-4的距离为:2018+4=2022,得出2022÷3=674,C从出发到2018点滚动674周,即可得出答案.
∵将数轴按如图所示从某一点开始折出一个等边三角形ABC,设点A表示的数为x-3,点B表示的数为2x+1,点C表示的数为-4,
∴-4-(2x+1)=2x+1-(x-3);
∴-3x=9,即x=-3.
故A表示的数为:x-3=-3-3=-6,
点B表示的数为:2x+1=2×(-3)+1=-5,
即等边三角形ABC边长为1,
数字2018对应的点与-4的距离为:2018+4=2022,
∵2022÷3=674,C从出发到2018点滚动674周,
∴数字2018对应的点将与△ABC的顶点C重合.
故答案为:(1)-3;(2)C.
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC边于点D.以AB上一点O为圆心作⊙O,使⊙O经过点A和点D.
(1)判断直线BC与⊙O的位置关系,并说明理由;
(2)若AC=3,∠B=30°,设⊙O与AB边的另一个交点为E,求线段BD,BE与劣弧所围成的阴影部分的面积(结果保留根号和)。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某童装店在服装销售中发现:进货价每件60元,销售价每件100元的某童装每天可售出20件为了迎接“六一儿童节”,童装店决定采取适当的促销措施,扩大销售量,增加盈利经调查发现:如果每件童装降价1元,那么每天就可多售出2件.
如果童装店想每天销售这种童装盈利1050元,同时又要使顾客得到更多的实惠,那么每件童装应降价多少元?
每件童装降价多少元时,童装店每天可获得最大利润?最大利润是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图(1),在平行四边形ABCD中,DE⊥AB,BF⊥CD,垂足分别为E、F,求证:AE=CF;
(2)如图(2),在平行四边形ABCD中,AC、BD是两条对角线,求证AC2+BD2=2(AB2+BC2)
(3)如图(3),PQ是△PMN的中线,若PM=11,PN=13,MN=10,求出PQ的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线交x轴于A、B两点,交y轴于点C,顶点为D.
(1)写出抛物线的对称轴及C、D两点的坐标(用含a的代数式表示)
(2)连接BD并以BD为直径作⊙M,当a=-1时,请判断⊙M是否经过点C,并说明理由;
(3)在(2)题的条件下,点P是抛物线上任意一点,过P作直线垂直于对称轴,垂足为Q. 那么是否存在这样的点P,使△PQD与以B、C、D为顶点的三角形相似?若存在,请求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等边中,,关于轴对称,交轴负半轴于点,.
(1)如图1,求点坐标;
(2)如图2,为轴负半轴上任一点,以为边作等边,的延长线交轴于点,求的长;
(3)如图3,在(1)的条件下,以为顶点作的角,它的两边分别与、交于点和,连接.探究线段、、之间的关系,并子以证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx+c+2的图象如图所示,有下列4个结论:①abc<0;②b2=4ac;③a+c=b﹣2;④m(am+b)+b>a(m≠﹣1),其中结论正确的有____________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图点在正比例函数图象上,点坐标为,连接,,点是线段的中点,点在线段上以每秒2个单位的速度由点向点运动,点在线段上由点向点运动,两点同时运动,同时停止,运动时间为秒.
(1)正比例函数的关系式为 ;
(2)当秒,且时,求点的坐标;
(3)连接,在点运动过程中,与是否全等?如果全等,请求出点的运动速度;如果不全等,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:点O到△ABC的两边AB,AC所在直线的距离相等,且OB=OC.
(1)如图1,若点O在边BC上,OE⊥AB,OF⊥AC,垂足分别为E,F.求证:AB=AC;
(2)如图,若点O在△ABC的内部,求证:AB=AC;
(3)若点O在△ABC的外部,AB=AC成立吗?请画出图表示.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com