精英家教网 > 初中数学 > 题目详情

【题目】问题:(1)如图①,在RtABC中,ABACDBC边上一点(不与点BC重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,则线段BCDCEC之间满足的等量关系式为   

探索:(2)如图②,在RtABCRtADE中,ABACADAE,将△ADE绕点A旋转,使点D落在BC边上,试探索线段ADBDCD之间满足的等量关系,并证明你的结论;

应用:(3)如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC45°.若BD9CD3,求AD的长.

【答案】(1)BCDCEC;(2BD2CD22AD2;(3AD6.

【解析】

1)易证△BAD≌△CAE,即可得到BCDCEC

2)连接CE,易证△BAD≌△CAE,再得到EDAD,然后在RtECD中利用勾股定理即可求得其关系;

(3)将线段AD绕点A顺时针旋转90°得到AE,连接CEBE,先证△ABE≌△ACD,再利用在RtBED中,由勾股定理,得DE2BD2BE2,故2AD2BD2CD2,再解出AD的长即可.

解:(1)BCDCEC

∵∠BAC=∠DAE90°

∴∠BAC-∠DAC=∠DAE-∠DAC,即∠BAD=∠CAE.

在△BAD和△CAE中,

∴△BAD≌△CAE(SAS)

BDCE

BCBDCDECCD

(2)BD2CD22AD2.

证明如下:

连接CE,如解图1所示.

∵∠BAC=∠BAD+∠DAC90°ABAC

∴∠ABC=∠ACB45°.

∵∠DAE=∠CAE+∠DAC90°

∴∠BAD=∠CAE.

在△BAD和△CAE中,

∴△BAD≌△CAE(SAS)

BDCE,∠ACE=∠ABC45°

∴∠BCE=∠ACB+∠ACE90°.

∵∠EAD90°AEAD

EDAD

RtECD中,由勾股定理,

ED2CE2CD2

BD2CD22AD2.

(3)将线段AD绕点A顺时针旋转90°得到AE,连接CEBE

如解图2所示,则AEAD,∠EAD90°

∴△EAD是等腰直角三角形,

DEAD,∠AED45°.

∵∠ABC=∠ACBADC45°

∴∠BAC90°ABAC

(2)的方法,可证得△ABE≌△ACD

BECD,∠AEB=∠ADC45°

∴∠BEC=∠AEB+∠AED90°.

RtBED中,由勾股定理,得DE2BD2BE2

2AD2BD2CD2.

BD9CD3

2AD2923272

AD6(负值已舍去)

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点O是边长为2的正方形ABCD的中心.函数y=(xh2的图象与正方形ABCD有公共点,则h的取值范围是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,ABAC,点DBC中点,∠EDF两边分别交线段AB于点E,交线段AC于点F,且∠EDF+BAC180°

1)如图1,当∠EDF90°时,求证:BEAF

2)如图2,当∠EDF60°时,求证:AE+AFAD

3)如图3,在(2)的条件下,连接EF并延长EF至点G,使FGEF,连接CG,若BE5CF4,求CG的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,将△ABC纸片沿中位线EH折叠,使点A对称点D落在BC边上,再将纸片分别沿等腰△BED和等腰△DHC的底边上的高线EF,HG折叠,折叠后的三个三角形拼合形成一个矩形,类似地,对多边形进行折叠,若翻折后的图形恰能拼合成一个无缝隙、无重叠的矩形,这样的矩形称为叠合矩形.

(1)将ABCD纸片按图2的方式折叠成一个叠合矩形AEFG,则操作形成的折痕分别是线段________________;S矩形AEFG:S□ABCD=__________

(2)ABCD纸片还可以按图3的方式折叠成一个叠合矩形EFGH,若EF=5,EH=12,求AD的长;

(3)如图4,四边形ABCD纸片满足AD∥BC,AD<BC,AB⊥BC,AB=8,CD=10,小明把该纸片折叠,得到叠合正方形,请你帮助画出一种叠合正方形的示意图,并求出AD、BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长为12,点E在边AB上,BE=8,过点EEFBC,分别交BD、CDG、F两点.若点P、Q分别为DG、CE的中点,则PQ的长为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某乡镇中学教学楼对面是一座小山,去年“联通”公司在山顶上建了座通讯铁塔.甲、乙两位同学想测出铁塔的高度,他们用测角器作了如下操作:甲在教学楼顶A处测得塔尖M的仰角为α,塔座N的仰角为β;乙在一楼B处只能望到塔尖M,测得仰角为θ(望不到底座),他们知道楼高AB20m,通过查表得:tanα0.5723tanβ0.2191tanθ0.7489;请你根据这几个数据,结合图形推算出铁塔高度MN的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场服装部为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励.为了确定一个适当的月销售目标,商场服装部统计了每位营业员在某月的销售额(单位:万元),数据如下:

17

18

16

13

24

15

28

26

18

19

22

17

16

19

32

30

16

14

15

26

15

32

23

17

15

15

28

28

16

19

对这30个数据按组距3进行分组,并整理、描述和分析如下.

频数分布表

组别

销售额

频数

7

9

3

2

2

数据分析表

平均数

众数

中位数

20.3

18

请根据以上信息解答下列问题:

(1)填空:a=  ,b=  ,c=  

(2)若将月销售额不低于25万元确定为销售目标,则有  位营业员获得奖励;

(3)若想让一半左右的营业员都能达到销售目标,你认为月销售额定为多少合适?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,对于点,给出如下定义:若上存在一点不与重合,使点关于直线的对称点上,则称的反射点.下图为的反射点的示意图.

1)已知点的坐标为的半径为

①在点中,的反射点是____________

②点在直线上,若的反射点,求点的横坐标的取值范围;

2的圆心在轴上,半径为轴上存在点的反射点,直接写出圆心的横坐标的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为弘扬中华传统文化,某校组织八年级1000名学生参加汉字听写大赛.为了解学生整体听写能力,赛后随机抽查了部分学生的成绩(得分取正整数,满分为100分)进行统计分析,并制作成图表:

组别

分数段

频数

频率

50.560.5

16

0.08

60.570.5

30

0.15

70.580.5

m

0.25

80.590.5

80

n

90.5100.5

24

0.12

请根据以上图表提供的信息,解答下列可题:

1)这次随机抽查了______名学生,表中的数m=______n=______;此样本中成绩的中位数落在第______组内;若绘制扇形统计图,则在修中“第三组”所对应扇形的圆心角的度数是______

2)补全频数直方图;

3)若成绩超过80分为优秀,请你估计该校八年级学生中汉字听写能力优秀的人数.

查看答案和解析>>

同步练习册答案