【题目】如图1,已知∠MON=60°,A、B两点同时从点O出发,点A以每秒x个单位长度沿射线ON匀速运动,点B以每秒y个单位长度沿射线OM匀速运动.
(1)若运动1s时,点A运动的路程比点B运动路程的2倍还多1个单位长度,运动3s时,点A、点B的运动路程之和为12个单位长度,则x=____,y=____;
(2)如图2,点C为△ABO三条内角平分线交点,连接BC、AC,在点A、B的运动过程中,∠ACB的度数是否发生变化?若不发生变化,求其值;若发生变化,请说明理由;
(3)如图3,在(2)的条件下,连接OC并延长,与∠ABM的角平分线交于点P,与AB交于点Q.
①试说明∠PBQ=∠ACQ;
②在△BCP中,如果有一个角是另一个角的2倍,请直接写出∠BAO的度数.
【答案】(1)3,1;(2)的度数不发生变化,;(3)①说明见解析;②.
【解析】
(1)根据“路程速度时间”建立一个关于x、y的二元一次方程组,求解即可得;
(2)先根据三角形的内角和定理可得,再根据角平分线的定义可得,然后根据三角形的内角和定理即可得;
(3)①先根据三角形的外角性质可得,再根据角平行线的定义即可得;
②先根据角平分线的定义、平角的定义得出,再根据三角形的外角性质得出,从而得出,然后根据直角三角形的性质得出,最后根据角的和差、角平分线的定义即可得.
(1)由题意得:
化简得
解得
故答案为:3,1;
(2)的度数不发生变化,其值求解如下:
由三角形的内角和定理得
点C为三条内角平分线交点,即AC平分,BC平分
由三角形的内角和定理得;
(3)①由三角形的外角性质得:
点C为三条内角平分线交点,即AC平分,OC平分
又是的角平分线
;
②是的角平分线,BC平分
由三角形的外角性质得:
则在中,如果有一个角是另一个角的2倍,那么一定是
.
科目:初中数学 来源: 题型:
【题目】“镇康人民想致富,可惜差条二级路”这一啊数瑟小调流传镇康大街小巷.经有关部门批准,龙南二级路已于 2015 年初启动,已知两工程队共同参与某项筑路工程,甲队单独施工一个月完成总工程的,这时增加乙队,两队又共同工作了2个月,总工程全部完成.问:
(1)那个工程队的施工速度快?
(2)若甲、乙两队同时施工,需多少时间完成整项工程?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB.
(1)求证:PC是⊙O的切线;
(2)求证:BC= AB;
(3)点M是 的中点,CM交AB于点N,若AB=4,求MNMC的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形网格中的△ABC,若小方格边长为1,请你根据所学的知识解决下列问题.
(1)求△ABC的面积;
(2)判断△ABC是什么形状,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,AD平分∠BAC,
(1)求作⊙O,圆心O是AD的中垂线与AB的交点,OD为半径.(尺规作图,不写作法,保留痕迹)
(2)求证:BC是⊙O切线.
(3)若BD=5,DC=3,求AC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,正方形ABCD的位置如右图所示,点A的坐标为(1,0),点D的坐标为(0,2).延长CB交x轴于点A1 , 作正方形A1B1C1C;延长C1B1交x轴于点A2 , 作正方形A2B2C2C1 , …按这样的规律进行下去,第2017个正方形的面积为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com