【题目】如图,直线y=x+3与x轴交于点C,与y轴交于点B,抛物线y=ax2+x+c经过B、C两点.
(1)求抛物线的解析式;
(2)如图,点E是直线BC上方抛物线上的一动点,当△BEC面积最大时,请求出点E的坐标和△BEC面积的最大值?
(3)在(2)的结论下,过点E作y轴的平行线交直线BC于点M,连接AM,点Q是抛物线对称轴上的动点,在抛物线上是否存在点P,使得以P、Q、A、M为顶点的四边形是平行四边形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.
【答案】
(1)
解:∵直线y=x+3与x轴交于点C,与y轴交于点B,
∴点B的坐标是(0,3),点C的坐标是(4,0),
∵抛物线y=ax2+x+c经过B、C两点,
∴
解得
∴y=.
(2)
解:如图1,过点E作y轴的平行线EF交直线BC于点M,EF交x轴于点F,
,
∵点E是直线BC上方抛物线上的一动点,
∴设点E的坐标是(x,),
则点M的坐标是(x,x+3),
∴EM=﹣(+3)=x2+x,
∴S△BEC=S△BEM+S△MEC
=
=×()×4
=x2+3x
=(x﹣2)2+3,
∴当x=2时,即点E的坐标是(2,3)时,△BEC的面积最大,最大面积是3.
(3)
解:在抛物线上存在点P,使得以P、Q、A、M为顶点的四边形是平行四边形.
①如图2,
,
由(2),可得点M的横坐标是2,
∵点M在直线y=x+3上,
∴点M的坐标是(2, ),
又∵点A的坐标是(﹣2,0),
∴AM= = ,
∴AM所在的直线的斜率是: = ;
∵y= x2+ x+3的对称轴是x=1,
∴设点Q的坐标是(1,m),点P的坐标是(x, x2+ x+3),则:
解得或
∵x<0,
∴点P的坐标是(﹣3, ).
②如图3,
,
由(2),可得点M的横坐标是2,
∵点M在直线y=x+3上,
∴点M的坐标是(2, ),
又∵点A的坐标是(﹣2,0),
∴AM= = ,
∴AM所在的直线的斜率是: = ;
∵y= x2+ x+3的对称轴是x=1,
∴设点Q的坐标是(1,m),点P的坐标是(x, x2+ x+3),则:
解得或
∵x>0,
∴点P的坐标是(5, ).
③如图4,
,
由(2),可得点M的横坐标是2,
∵点M在直线y=x+3上,
∴点M的坐标是(2, ),
又∵点A的坐标是(﹣2,0),
∴AM= = ,
∴AM所在的直线的斜率是: = ;
∵y= x2+ x+3的对称轴是x=1,
∴设点Q的坐标是(1,m),点P的坐标是(x, x2+ x+3),则:
解得
∴点P的坐标是(﹣1, ).
综上,可得
在抛物线上存在点P,使得以P、Q、A、M为顶点的四边形是平行四边形,
点P的坐标是(﹣3,)、(5,)、(﹣1, ).
【解析】(1)首先根据直线y=﹣x+3与x轴交于点C,与y轴交于点B,求出点B的坐标是(0,3),点C的坐标是(4,0);然后根据抛物线y=ax2+x+c经过B、C两点,求出a\c的值是多少,即可求出抛物线的解析式.
(2)首先过点E作y轴的平行线EF交直线BC于点M,EF交x轴于点F,然后设点E的坐标是(x,﹣x2+x+3),则点M的坐标是(x,﹣x+3),求出EM的值是多少;最后根据三角形的面积的求法,求出S△ABC , 进而判断出当△BEC面积最大时,点E的坐标和△BEC面积的最大值各是多少即可.
(3)在抛物线上存在点P,使得以P、Q、A、M为顶点的四边形是平行四边形.然后分三种情况讨论,根据平行四边形的特征,求出使得以P、Q、A、M为顶点的四边形是平行四边形的点P的坐标是多少即可.
【考点精析】利用二次函数的最值对题目进行判断即可得到答案,需要熟知如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当x=-b/2a时,y最值=(4ac-b2)/4a.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,点D是边AB上一点,点E是边AC上一点,且DE∥BC,∠B=40°,∠AED=60°,则∠A的度数是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知等边△ABC,D是边BC的中点,过D作DE∥AB于E,连接BE交AD于D1;过D1作D1E1∥AB于E1 , 连接BE1交AD于D2;过D2作D2E2∥AB于E2 , …,如此继续,若记S△BDE为S1 , 记 为S2 , 记 为S3…,若S△ABC面积为Scm,则Sn=cm(用含n与S的代数式表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】开学初,小明到文具批发部一次性购买某种笔记本,该文具批发部规定:这种笔记本售价y(元/本)与购买数量x(本)之间的函数关系如图所示.
(1)图中线段AB所表示的实际意义是;
(2)请直接写出y与x之间的函数关系式;
(3)已知该文具批发部这种笔记本的进价是3元/本,若小明购买此种笔记本超过10本但不超过20本,那么小明购买多少本时,该文具批发部在这次买卖中所获的利润W(元)最大?最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,小岛A在港口B的北偏东50°方向,小岛C在港口B的北偏西25°方向,一艘轮船以每小时20海里的速度从港口B出发向小岛A航行,经过5小时到达小岛A,这时测得小岛C在小岛A的北偏西70°方向,求小岛A距离小岛C有多少海里?(最后结果精确到1海里,参考数据:≈1.1414,≈1.732)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了培养学生的阅读习惯,某校开展了“读好书,助成长”系列活动,并准备购置一批图书,购书前,对学生喜欢阅读的图书类型进行了抽样调查,并将调查数据绘制成两幅不完整的统计图,如图所示,根据统计图所提供的信息,回答下列问题:
(1)本次调查共抽查了名学生,两幅统计图中的m= , n= .
(2)已知该校共有960名学生,请估计该校喜欢阅读“A”类图书的学生约有多少人?
(3)学校要举办读书知识竞赛,七年(1)班要在班级优胜者2男1女中随机选送2人参赛,求选送的两名参赛同学为1男1女的概率是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的边长为a,在AB、BC、CD、DA边上分别取点A1、B1、C1、D1 , 使AA1=BB1=CC1=DD1=a,在边A1B1、B1C1、C1D1、D1A1上分别取点A2、B2、C2、D2 , 使A1A2=B1B2=C1C2=D1D2=A1B2 , ….依次规律继续下去,则正方形AnBnCnDn的面积为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在正方形ABCD中,对角线AC与BD交于点O;在Rt△PMN中,∠MPN=90°.
(1)如图1,若点P与点O重合且PM⊥AD、PN⊥AB,分别交AD、AB于点E、F,请直接写出PE与PF的数量关系;
(2)将图1中的Rt△PMN绕点O顺时针旋转角度α(0°<α<45°).
①如图2,在旋转过程中(1)中的结论依然成立吗?若成立,请证明;若不成立,请说明理由;
②如图2,在旋转过程中,当∠DOM=15°时,连接EF,若正方形的边长为2,请直接写出线段EF的长;
③如图3,旋转后,若Rt△PMN的顶点P在线段OB上移动(不与点O、B重合),当BD=3BP时,猜想此时PE与PF的数量关系,并给出证明;当BD=mBP时,请直接写出PE与PF的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知函数f(x)=mex+x+1. (Ⅰ)讨论f(x)的单调性;
(Ⅱ)若f(x)有两个零点x1 , x2(x1<x2),证明:x1+x2>0.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com