精英家教网 > 初中数学 > 题目详情

【题目】如图,CD是一高为4米的平台,AB是与CD底部相平的一棵树,在平台顶C点测得树顶A点的仰角α=30°,从平台底部向树的方向水平前进3米到达点E,在点E处测得树顶A点的仰角β=60°,求树高AB(结果保留根号)

【答案】解:作CF⊥AB于点F,设AF=x米,
在Rt△ACF中,tan∠ACF=
则CF= = x,
在直角△ABE中,AB=x+BF=4+x(米),
在直角△ABF中,tan∠AEB= ,则BE= = (x+4)米.
∵CF﹣BE=DE,即 x﹣ (x+4)=3.
解得:x=
则AB= +4= (米).
答:树高AB是 米.

【解析】作CF⊥AB于点F,设AF=x米,在直角△ACF中利用三角函数用x表示出CF的长,在直角△ABE中表示出BE的长,然后根据CF﹣BE=DE即可列方程求得x的值,进而求得AB的长.本题考查了解直角三角形的应用,解答本题关键是构造直角三角形,利用三角函数的知识表示出相关线段的长度.
【考点精析】掌握关于仰角俯角问题是解答本题的根本,需要知道仰角:视线在水平线上方的角;俯角:视线在水平线下方的角.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】骰子是一种特别的数字立方体(如图),它符合规则:相对两面的点数之和总是7,下面四幅图中可以折成符合规则的骰子的是(  ).

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=﹣x+8与x轴、y轴分别相交于点A、B,设M是OB上一点,若将ABM沿AM折叠,使点B恰好落在x轴上的点B′处.求:

(1)点B′的坐标;

(2)直线AM所对应的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图1,ABC是等腰直角三角形,∠BAC=90°,DE是经过点A的直线,作BDDE,CEDE,

(1)求证:DE=BD+CE.

(2)如果是如图2这个图形,我们能得到什么结论?并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2016年“母亲节”前夕,宜宾某花店用4000元购进若干束花,很快售完,接着又用4500元购进第二批花,已知第二批所购花的束数是第一批所购花束数的1.5倍,且每束花的进价比第一批的进价少5元
(1)求第一批花每束的进价是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,延长△ABC的各边,使得BF=AC,AE=CD=AB,连结DE,EF,FD,得到△DEF为等边三角形.

求证:(1)△AEF≌△CDE;

(2)△ABC为等边三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列因式分解正确的是( )

A. x2y2-z2=x2y+z)(y-z B. -x2y+4xy-5y=-yx2+4x+5

C. x+22-9=x+5)(x-1 D. 9-12a+4a2=-3-2a2

【答案】C

【解析】解析:选项A.用平方差公式法,应为x2y2-z2=xy+z·xy-z),故本选项错误.

选项B.用提公因式法,应为-x2y+ 4xy-5y=- yx2- 4x+5),故本选项错误.

选项C.用平方差公式法,(x+22-9=x+2+3)(x+2-3=x+5)(x-1),故本选项正确.

选项D.用完全平方公式法,应为9-12a+4a2=3-2a2,故本选项错误.

故选C.

点睛:(1)完全平方公式: .

(2)平方差公式:(a+b)(a-b)= .

(3)常用等价变形:

,

,

.

型】单选题
束】
10

【题目】已知abc分别是ABC的三边长且满足2a4+2b4+c4=2a2c2+2b2c2ABC( )

A. 等腰三角形 B. 等腰直角三角形

C. 直角三角形 D. 等腰三角形或直角三角形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直与x轴,垂足为点B,反比例函数y= (x>0)的图象经过AO的中点C,且与AB相交于点D,OB=4,AD=3,

(1)求反比例函数y= 的解析式;
(2)求cos∠OAB的值;
(3)求经过C、D两点的一次函数解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列各式:;②;③;④;⑤;⑥;⑦;⑧中方程有________,一元一次方程有________(只填序号).

查看答案和解析>>

同步练习册答案