【题目】如图,直线y=﹣x+8与x轴、y轴分别相交于点A、B,设M是OB上一点,若将△ABM沿AM折叠,使点B恰好落在x轴上的点B′处.求:
(1)点B′的坐标;
(2)直线AM所对应的函数关系式.
【答案】(1)B'的坐标为:(﹣4,0);(2)直线AM的解析式为:y=﹣ x+3.
【解析】试题分析:(1)先确定点A、点B的坐标,再由AB=AB',可得AB'的长度,求出OB'的长度,即可得出点B'的坐标;
(2)设OM=m,则B'M=BM=8﹣m,在Rt△OMB'中利用勾股定理求出m的值,得出M的坐标后,利用待定系数法可求出AM所对应的函数解析式.
解:(1)y=﹣x+8,
令x=0,则y=8,
令y=0,则x=6,
∴A(6,0),B(0,8),
∴OA=6,OB=8 AB=10,
∵A B'=AB=10,
∴O B'=10﹣6=4,
∴B'的坐标为:(﹣4,0).
(2)设OM=m,则B'M=BM=8﹣m,
在Rt△OMB'中,m2+42=(8﹣m)2,
解得:m=3,
∴M的坐标为:(0,3),
设直线AM的解析式为y=kx+b,
则,
解得:,
故直线AM的解析式为:y=﹣x+3.
科目:初中数学 来源: 题型:
【题目】已知Rt△ABC中,∠C=90,AC=4,BC=8。动点P从点C出发,以每秒2个单位的速度沿射线CB方向运动,连接AP.设运动时间为t s.
(1)求斜边AB的长.
(2)当t为何值时,△PAB的面积为6?
(3)若t<4,请在所给的图中画出△PAB中AP边上的高BQ,问:当t为何值时,BQ长为4?并直接写出此时点Q到边BC的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学习小组五名同学在期末模拟考试(满分为120)的成绩如下:100、100、x、x、80.已知这组数据的中位数和平均数相等,那么整数x的值可以是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(-1,0),下列结论:
①4ac<b2;
②方程ax2+bx+c=0的两个根是x1=-1,x2=3;
③3a+c>0;
④当y>0时,x的取值范围是-1≤x<3 ;
⑤当x<0时,y随x增大而增大;
其中正确的个数是 ( )
A. 4个 B. 3个 C. 2个 D. 1个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某种零件,标明要求是φ20±0.2 mm(φ表示直径,单位:毫米),经检查,一个零件的直径是19.9mm,该零件_____________(填“合格” 或“不合格”).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读:如图1,在△ABC中,BE是AC边上的中线, D是BC边上的一点,CD:BD=1:2,AD与BE相交于点P,求的值.小昊发现,过点A作AF∥BC,交BE的延长线于点F,通过构造△AEF,经过推理和计算能够使问题得到解决(如图2).
(1)的值为 ;
(2)参考小昊思考问题的方法,解决问题:
如图3,在△ABC中,∠ACB=90°,点D在BC的延长线上,AD与AC边上的中线BE的延长线交于点P,DC:BC:AC=1:2:3 .
求 的值;
若CD=2,求BP的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】现有以下五个结论:①0没有相反数;②若两个数互为相反数,则它们相除的商等于-1;③负数的绝对值是它的倒数;④绝对值等于其本身的有理数是零;⑤几个有理数相乘,负因数个数为奇数则乘积为负数.其中正确的有( )
A.0个B.1个C.2个D.3个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在梯形ABCD中,AD∥BC,∠B=90°,AB=14cm,AD=18cm,BC=21cm,点P从点A开始沿AD边向点D以1cm/秒的速度移动,点Q从点C开始沿CB边向点B以2cm/秒的速度移动.如果P、Q分别从A、C同时出发.设移动的时间为t.
求:(1)t为何值时,梯形PQCD是等腰梯形;
(2)t为何值时,AB的中点E到线段PQ的距离为7cm.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com