分析 (1)根据平行四边形性质得出DF∥BE,得出平行四边形BFDE,根据矩形的判定得出即可;
(2)根据矩形的性质求出BF=DE=4,根据勾股定理求出AD,求出AD=DF,即可得出答案.
解答 (1)证明:∵四边形ABCD是平行四边形,
∴DF∥BE,
又∵DF=BE,
∴四边形BFDE是平行四边形,
又∵DE⊥AB,
∴∠DEB=90°,
∴平行四形BFDE是矩形;
(2)解:∵四边形BFDE是矩形,
∴DF∥AB,DE=BF=4,DF=BE,
∴∠DAF=∠FAB,
又∵AF平分∠DAB,
∴∠DAF=∠FAB,
∴∠DFA=∠DAF,
∴DA=DF,
又∵DE⊥AB,
∴∠DEA=90°,
在Rt△ADE中
AD=$\sqrt{A{E}^{2}+D{E}^{2}}$=$\sqrt{{3}^{2}+{4}^{2}}$=5,
∴BE=5.
点评 本题考查了平行线的性质,平行四边形的性质和判定,勾股定理,矩形的性质和判定的应用,能综合运用知识点进行推理是解此题的关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | B. | C. | D. |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com