精英家教网 > 初中数学 > 题目详情

【题目】如图1,每个小正方形的边长都为1,点ABC在正方形网格的格点上,AB5AC2BC

1)请在网格中画出ABC

2)如图2,直接写出:

AC   BC   

ABC的面积为   

AB边上的高为   

【答案】1)见解析;(2)①,③

【解析】

1)根据点ABC在正方形网格的格点上,AB=5AC=2BC=,即可在网格中画出△ABC
2)①根据勾股定理即可求出ACBC的长;
②根据割补法即可求出三角形ABC的面积;
③利用面积法以及勾股定理即可求出AB边上的高.

解:(1)△ABC即为所求;

2)①AC

BC

SABC2×21×11×21×2

③如图2

AB边上的高为CD,垂足为D

SABCABCD

AB

CD

CD

故答案为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在中,于点,过点与边相切于点,交于点的直径.

1)求证:

2)若,求的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,将矩形纸片折叠,使得顶点与边上的动点重合(点不与点重合),为折痕,点分别在边上.连结,其中,相交于点过点

1)若,求证:

2)随着点的运动,若相切于点,又与相切于点,且,求的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,函数的图象经过点,作ACx轴于点C

1)求k的值;

2)直线AB图象经过点x轴于点.横、纵坐标都是整数的点叫做整点.线段ABACBC围成的区域(不含边界)为W

①直线AB经过时,直接写出区域W内的整点个数;

②若区域W内恰有1个整点,结合函数图象,求a的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点ABC的坐标分别为(-13)、(-41)、(-21),将△ABC沿一确定方向平移得到△A1B1C1,点B的对应点B1的坐标是(12),则点A1C1的坐标分别是(

A.A144),C132B.A133),C121

C.A143),C123D.A134),C122

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,DE分别是△ABC的边ABAC的中点,HG是边BC上的点,且HG=BCSABC =12,则图中阴影部分的面积为( )

A.6B.4C.3D.2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,正方形中, 的中点,过点于点,过点垂直的延长线于点,交于点

1)求证:

2)如图2,连接,连接并延长交于点I

①求证:

②求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:在平面直角坐标系中,为坐标原点,的边平行于轴.若的三个顶点都在二次函数的图像上,则称为该二次函数图像的“伴随三角形”.为抛物的“伴随三角形”.

1)若点是抛物线与轴的交点,求点的坐标.

2)若点在该抛物线的对称轴上,且到边的距离为2,求的面积.

3)设两点的坐标分别为,比较的大小,并求的取值范围.

(4)是抛物线的“伴随三角形”,点在点的左侧,且,点的横坐标是点的横坐标的2倍,设该抛物线在上最高点的纵坐标为,当时,直接写出的取值范围和面积的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校团委举办了一次中国梦,我的梦演讲比赛,满分10分,学生得分均为整数,成绩达6分以上(含6分)为合格,达9分以上(含9分)为优秀.这次竞赛中甲,乙两组学生成绩分布的条形统计图如下:

1)将下表补充完整:

组别

平均分

中位数

众数

方差

合格率

优秀率

6.8

  

6

3.96

90%

20%

  

7.5

  

2.76

80%

10%

2)小明同学说:这次竞赛我得了7分,在我们小组中排名属中游略偏上!观察上表可知,小明是 组学生(填””);

3)甲组同学说他们组的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组.但乙组同学不同意甲组同学的说法,认为他们组的成绩要好于甲组.请你给出两条支持乙组同学观点的理由.

查看答案和解析>>

同步练习册答案