精英家教网 > 初中数学 > 题目详情

【题目】如图,将矩形ABCD沿GH对折,点C落在Q处,点D落在E处,EQ与BC相交于F.若AD=8cm,AB=6cm,AE=4cm.则△EBF的周长是cm.

【答案】8
【解析】解:设AH=a,则DH=AD﹣AH=8﹣a,

在Rt△AEH中,∠EAH=90°,AE=4,AH=a,EH=DH=8﹣a,

∴EH2=AE2+AH2,即(8﹣a)2=42+a2

解得:a=3.

∵∠BFE+∠BEF=90°,∠BEF+∠AEH=90°,

∴∠BFE=∠AEH.

又∵∠EAH=∠FBE=90°,

∴△EBF∽△HAE,

= = =

∵CHAE=AE+EH+AH=AE+AD=12,

∴CEBF= CHAE=8.

所以答案是:8.

【考点精析】解答此题的关键在于理解勾股定理的概念的相关知识,掌握直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2,以及对矩形的性质的理解,了解矩形的四个角都是直角,矩形的对角线相等.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知在平面直角坐标系中,为坐标原点,点的坐标为,点的坐标为,点的坐标为,其中满足方程组

1)若点轴的距离为6,则的值为_________

2)连接,线段沿轴方向向上平移到线段,则点到直线的距离为_______,线段扫过的面积为15,则点平移后对应点的纵坐标为_______

3)连接,若的面积小于等于12,求的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,AD=2,AB=3,过点A,C作相距为2的平行线段AE,CF,分别交CD,AB于点E,F,则DE的长是( )

A.
B.
C.1
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们用[a]表示不大于a的最大整数,例如:[3.5]3[4]4[1.5]=-2;用{a}表示大于a的最小整数,例如:{3.5}4{1}2{2.5}=-2.解决下列问题:

(1)[5.5]等于多少,{2.5}等于多少;

(2)[x]3,写出x的取值范围;若{y}=-2,写出y的取值范围.

(3)已知xy满足方程组,求xy的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,P为平行四边形ABCD边AD上一点,E、F分别为PB、PC的中点,△PEF、△PDC、△PAB的面积分别为S、S1、S2 , 若S=2,则S1+S2=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).

(1)求出△ABC的面积;

(2)在图中作出△ABC关于y轴的对称图形△A1B1C1

(3)写出点A1,B1,C1的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对于实数p,q,我们用符号min{p,q}表示p,q两数中较小的数,如min{1,2}=1,因此,min{﹣ ,﹣ }=;若min{(x﹣1)2 , x2}=1,则x=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABCDEGEMFM分别平分∠AEF,∠BEF,∠EFD,则图中与∠DFM相等的角(不含它本身)的个数为( )

A. 5 B. 6 C. 7 D. 8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合题
(1)如图1,△ABC中,∠BAC=90°,AB=AC,AE是过A点的一条直线,且B、C在AE的异侧,BD⊥AE于D,CE⊥AE于E,求证:BD=DE+CE.

(2)若直线AE绕点A旋转到图2的位置时(BD<CE),其余条件不变,问BD与DE、CE的关系如何?请予以证明.

查看答案和解析>>

同步练习册答案