【题目】如图所示的表格是某次篮球联赛部分球队的积分表,则下列说法不正确的是( )
队名 | 比赛场数 | 胜场 | 负场 | 积分 |
前进 | 14 | 10 | 4 | 24 |
光明 | 14 | 9 | 5 | 23 |
远大 | 14 | 7 | a | 21 |
卫星 | 14 | 4 | 10 | b |
钢铁 | 14 | 0 | 14 | 14 |
… | … | … | … | … |
A.负一场积1分,胜一场积2分B.卫星队总积分b=18
C.远大队负场数a=7D.某队的胜场总积分可以等于它的负场总积分
【答案】D
【解析】
A、设胜一场积x分,负一场积y分,根据前进和光明队的得分情况,即可得出关于x,y的二元一次方程组,解之即可得出结论;
B、根据总积分=2×得胜的场次数+1×负的场次数,即可求出b值;
C、由负的场次数=总场次数-得胜的场次数,即可求出a值;
D、设该队胜了z场,则负了(14-z)场,根据胜场总积分等于负场总积分,即可得出关于z的一元一次方程,解之即可得出z值,由该值不为整数即可得出结论.
A、设胜一场积x分,负一场积y分,
依题意,得:,
解得:,
∴选项A正确;
B、b=2×4+1×10=18,选项B正确;
C、a=14-7=7,选项C正确;
D、设该队胜了z场,则负了(14-z)场,
依题意,得:2z=14-z,
解得:z=,
∵z=不为整数,
∴不存在该种情况,选项D错误.
故选:D.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,四边形OABC为矩形,点A(0,8),C(6,0).动点P从点B出发,以每秒1个单位长的速度沿射线BC方向匀速运动,设运动时间为t秒.
(1)当t= s时,以OB、OP为邻边的平行四边形是菱形;
(2)当点P在OB的垂直平分线上时,求t的值;
(3)将△OBP沿直线OP翻折,使点B的对应点D恰好落在x轴上,求t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知y是x的一次函数,当x=1时,y=1;当x=-2时,y=-14.
(1)求这个一次函数的关系式;
(2)在如图所示的平面直角坐标系中作出函数的图像;
(3)由图像观察,当0≤x≤2时,函数y的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两组同学玩“两人背夹球”比赛,即:每组两名同学用背部夹着球跑完规定的路程,若途中球掉下时须捡起并回到掉球处继续赛跑,用时少者胜.结果:甲组两位同学掉了球;乙组两位同学顺利跑完.设比赛中同学距出发点的距离用y表示,单位是米;比赛时间用x表示,单位是秒.两组同学比赛过程用图像表示如下:
(1)这是一次 米的背夹球比赛;
(2)线段 表示甲组两位同学在比赛中途掉球,耽误了 秒;
(3)甲组同学到达终点用了 秒,乙组同学到达终点用了 秒,获胜的是 组同学;
(4)请直接写出C点坐标,并说明点C的实际意义.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】综合与实践
某“综合与实践”小组开展了“长方体纸盒的制作”实践活动,他们利用边长为的正方形纸板制作出两种不同方案的长方体盒子(图1为无盖的长方体纸盒,图2为有盖的长方体纸盒),请你动手操作验证并完成任务.(纸板厚度及接缝处忽略不计)
动手操作一:
根据图1方式制作一个无盖的长方体盒子.方法:先在纸板四角剪去四个同样大小边长为的小正方形,再沿虚线折合起来.
问题解决
(1)该长方体纸盒的底面边长为_______;(请你用含的代数式表示)
(2)若,,则长方体纸盒的底面积为_______;
动手操作二:
根据图2方式制作一个有盖的长方体纸盒.方法:先在纸板四角剪去两个同样大小边长为的小正方形和两个同样大小的小长方形,再沿虚线折合起来.
拓展延伸
(3)该长方体纸盒的体积为______;(请你用含的代数式表示)
(4)现有两张边长均为的正方形纸板,分别按图1、图2的要求制作无盖和有盖的两个长方体盒子,若,求无盖盒子的体积是有盖盒子体积的多少倍.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某公司租用两种型号的货车各一辆,分別将产品运往甲市与乙市(运费收费标准如下表),已知该公司到乙市的距离比到甲市的距离远30km,B车的总运费比A车的总运费少1080元.
(1)求这家公司分别到甲、乙两市的距离;
(2)若A,B两车同时从公司出发,其中B车以60km/h的速度匀速驶向乙市,而A车根据路况需要,先以45kmh的速度行驶了3小吋,再以75km/h的速度行驹到达甲市.
①在行驶的途中,经过多少时间,A,B两车到各自目的地的距离正好相等?
②若公司希望B车能与A车同吋到达目的地,B车必须在以60km/h的速度行驶一段时间后提速,若提速后的速度为70km/h(速度从60km/h提速到70km/h的时间忽略不汁),则B车应该在行驶 小时后提速.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如下的三角形解释(a+b)n的展开式中各项的系数,此三角形称为“杨辉三角”,
即:(a+b)1=a+b
(a+b)2=a2+2ab+b2
(a+b)3=a3+3a2b+3ab2+b3
(a+b)4=a4+4a3b+6a2b2+4ab3+b4
(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5
根据“杨辉三角”计算出(a+b)10的展开式中第三项的系数为( )
A.10B.45C.46D.50
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,AB=3,AD=9,点E在边AD上,AE=1,过E、D两点的圆的圆心O在边AD的上方,直线BO交AD于点F,作DG⊥BO,垂足为G.当△ABF与△DFG全等时,⊙O的半径为( )
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com