【题目】如图,AC⊥x轴于点A,点B在y轴的正半轴上,∠ABC=60°,AB=4,BC=,点D为AC与反比例函数的图象的交点.若直线BD将△ABC的面积分成1:2的两部分,则k的值为______.
【答案】﹣4或﹣8.
【解析】解:如图所示,过C作CE⊥AB于E,∵∠ABC=60°,BC=,∴Rt△CBE中,CE=3,又∵AC=4,∴△ABC的面积=AB×CE=×4×3=6,连接BD,OD,∵直线BD将△ABC的面积分成1:2的两部分,∴点D将线段AC分成1:2的两部分,①当AD:CD=1:2时,△ABD的面积=×△ABC的面积=2,∵AC∥OB,∴△DOA的面积=△ABD的面积=2,∴ |k|=2,即k=±4,又∵k<0,∴k=﹣4;
②当AD:CD=2:1时,△ABD的面积=×△ABC的面积=4,∵AC∥OB,∴△DOA的面积=△ABD的面积=4,∴ |k|=4,即k=±8,又∵k<0,∴k=﹣8,故答案为:﹣4或﹣8.
科目:初中数学 来源: 题型:
【题目】如图,已知AB∥CD,F为CD上一点,∠EFD=60°,∠AEC=2∠CEF,若6°<∠BAE<15°,∠C的度数为整数,则∠C的度数为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某种商品因换季准备打折出售,如果按照原定价的七五折出售,每件将赔25元,而按原定价的九折出售,每件将赚20元,则这种商品的原定价是( )
A.200元B.300元C.320元D.360元
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图抛物线的图象交x轴于A(﹣2,0)和点B,交y轴负半轴于点C,且OB=OC,下列结论:
①2b﹣c=2;②a=;③ac=b﹣1;④>0
其中正确的个数有( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,抛物线(a<0)与x轴交于A(3,0)、B两点,与y轴交于点C,抛物线的对称轴是直线x=1,D为抛物线的顶点,点E在y轴C点的上方,且CE=.
(1)求抛物线的解析式及顶点D的坐标;
(2)求证:直线DE是△ACD外接圆的切线;
(3)在直线AC上方的抛物线上找一点P,使,求点P的坐标;
(4)在坐标轴上找一点M,使以点B、C、M为顶点的三角形与△ACD相似,直接写出点M的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某市积极开展“阳光体育进校园”活动,各校学生坚持每天锻炼一小时.某校根据本校的实际情况,决定开设 A:乒乓球,B:篮球,C:跑步,D:跳绳四种运动项目.规定每个学生必须参加一项活动.学校为了了解学生最喜欢哪一种项目,拟采用以下的方式进行调查.
方式一:调查该校七年级女生喜欢的运动项目
方式二:调查该校每个班级学号为 5 的倍数的学生喜欢的运动项目
方式三:调查该校书法小组的学生喜欢的运动项目
方式四:调查该校田径队的学生喜欢的运动项目
(1)上面的调查方式合适的是 ;
学校体育组采用了(1)中的方式,将调查的结果绘制成右侧两幅不完整的统计图.请你结合图中的信息解答下列问题:
(2)在扇形统计图中,B 项目对应的圆心角的度数为 ;
(3)请补全条形统计图;
(4)已知该校有 3600 名学生,请根据调查结果估计全校学生最喜欢乒乓球的人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在△ABC中,∠C>∠B,AD,AE分别是△ABC的高和角平分线.
(1)若∠B=30°,∠C=50°,求∠DAE的度数;
(2)∠DAE与∠C-∠B有何关系?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com