【题目】(本小题满分9分)
已知关于x的一元二次方程x2–(m–3)x–m=0,
(1)求证:方程有两个不相等的实数根;
(2)如果方程的两实根分别为x1、x2,且x12+x22–x1x2=7,求m的值.
科目:初中数学 来源: 题型:
【题目】定义:在等腰三角形中,对于顶角的每一个确定的值,其底边与腰的比值都是唯一确定的,这个比值是顶角的正对函数.例如:图①,在△ABC中,AB=AC,顶角A的正对函数记作sadA,sadA=或sadA=.
(1)在图①中,若∠B=60°,则sadA= .
(2)如图②,在△ABC中,AB=AC,若∠BAC=120°,求sad∠BAC.
(3)在Rt△ABC中,∠C=90°,sinA=,直接写出三个内角的正对函数值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:⊙O的半径为25cm,弦AB=40cm,弦CD=48cm,AB∥CD.求这两条平行弦AB,CD之间的距离______________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(本小题满分9分)已知二次函数y=x2–mx+m–2:
(1)求证:不论m为任何实数,此二次函数的图象与x轴都有两个交点;
(2)当二次函数的图象经过点(3,6)时,确定m的值,并写出此二次函数与坐标轴的交点坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(本小题满分9分)
已知二次函数y=x2–4x+3.
(1)求出函数的顶点坐标,对称轴,以及与x轴的交点,并据此作出函数的图象;
(2)当1<x<5时,求y的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(10分)感知:如图①,在四边形ABCD中,AB∥CD,∠B=90°,点P在BC边上,当∠APD=90°时,易证△ABP∽△PCD,从而得到BPPC=ABCD(不需证明)
探究:如图②,在四边形ABCD中,点P在BC边上,当∠B=∠C=∠APD时,结论BPPC=ABCD仍成立吗?请说明理由?
拓展:如图③,在△ABC中,点P是BC的中点,点D、E分别在边AB、AC上.若∠B=∠C=∠DPE=45°,BC=4 ,CE=3,则DE的长为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=ax2+bx+c与x轴交于点A(1,0),B(3,0),且过点C(0,-3).
(1)求抛物线的解析式和顶点坐标;
(2)请你写出一种平移的方法,使平移后抛物线的顶点落在直线y=-x上,并写出平移后抛物线的解析式.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com