精英家教网 > 初中数学 > 题目详情

【题目】如图,在四边形ABCD中,AD∥BC,EAB的中点,连接DE并延长交CB的延长线于点F,点G在边BC上,且∠GDF=∠ADF.连接EG,判断EGDF的位置关系,并说明理由.

【答案】EG与DF的位置关系是EG⊥DF.

【解析】

先证明ADEBFE得到DE=EF先证明△DGF是等腰三角形再根据等腰三角形三线合一的性质得出结论

EGDF的位置关系是EGDF.理由如下:

ADBC,∴∠ADE=BFE

EAB的中点,∴AE=BE

又∵∠FEB=∠DEA,∴ADEBFE,∴DE=EF

∵∠GDF=ADF,∠ADE=BFE,∴∠GDF=BFE,∴GD=GF

DE=EF,∴EGDF

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,BD垂直平分AC,垂足为点FE为四边形ABCD外一点,且∠ADE=∠BADAE⊥AC

1)求证:四边形ABDE是平行四边形;

2)如果DA平分∠BDEAB=5AD=6,求AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在求1+2+22+23+24+25+26的值时,小明发现:从第二个加数起每一个加数都是前一个加数的2倍,于是他设:S=1+2+22+23+24+25+26①然后在①式的两边都乘以2,得:2S=2+22+23+24+25+26+27 ②;②﹣①得2S﹣S=27﹣1,S=27﹣1,即1+2+22+23+24+25+26=27﹣1.

(1)1+3+32+33+34+35+36的值

(2)1+a+a2+a3+…+a2013(a≠0a≠1)的值

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC的三条角平分线相交于点I,过点IDIIC,交AC于点D.

(1)如图①,求证:∠AIB=ADI;

(2)如图②,延长BI,交外角∠ACE的平分线于点F.

①判断DICF的位置关系,并说明理由;

②若∠BAC=70°,求∠F的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠BAC90°ABAC,点DBC的中点,直角∠MDN绕点D旋转,DMDN分别与边ABAC交于EF两点,下列结论:①△DEF是等腰直角三角形;②AECF③△BDE≌△ADFBECFEF,其中正确结论是( )

A. ①②④ B. ②③④

C. ①②③ D. ①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某公司向甲、乙两所中学送水,每次送往甲中学7600升,乙中学4000升.已知人均送水量相同,甲中学师生人数是乙中学的2倍少20人.

(1)求这两所中学师生人数分别是多少;

(2)若送瓶装水,价格为1/升;若用消防车送饮用水,不需购买,但需配送水塔,容量500升的水塔售价为520/个,其他费用不计.请问这次乙中学用瓶装水花费少还是饮用消防车送水花费少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,⊙C的半径为r,P是与圆心C不重合的点,点P关于⊙C的限距点的定义如下:若P′为直线PC与⊙C的一个交点,满足r≤PP′≤2r,则称P′为点P关于⊙C的限距点,如图为点P及其关于⊙C的限距点P′的示意图.

(1)当⊙O的半径为1时.
①分别判断点M(3,4),N( ,0),T(1, )关于⊙O的限距点是否存在?若存在,求其坐标;
②点D的坐标为(2,0),DE,DF分别切⊙O于点E,点F,点P在△DEF的边上.若点P关于⊙O的限距点P′存在,求点P′的横坐标的取值范围;
(2)保持(1)中D,E,F三点不变,点P在△DEF的边上沿E→F→D→E的方向运动,⊙C的圆心C的坐标为(1,0),半径为r,请从下面两个问题中任选一个作答.

问题1

问题2

若点P关于⊙C的限距点P′存在,且P′随点P的运动所形成的路径长为πr,则r的最小值为

若点P关于⊙C的限距点P′不存在,则r的取值范围为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,BE平分∠ABC交AD于点E,F为BE上一点,连接DF,过F作FG⊥DF交BC于点G,连接BD交FG于点H,若FD=FG,BF=3 ,BG=4,则GH的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列方程中变形正确的是(

3x+6=0变形为x+2=0;

2x+8=5-3x变形为x=3;

=4去分母,得3x+2x=24;

(x+2)-2(x-1)=0去括号,得x+2-2x-2=0.

A. ①③ B. ①②③ C. ①④ D. ①③④

查看答案和解析>>

同步练习册答案