【题目】如图,在中,,是中线,作关于的轴对称图形.
(1)直接写出和的位置关系;
(2)连接,写出和的数量关系,并说明理由;
(3)当,时,在上找一点,使得点到点与到点的距离之和最下小,求的面积.
【答案】(1)垂直;(2).理由见解析;(3).
【解析】
(1)根据对称点连线垂直于对称轴,即可确定AC⊥DE;(2)连接CE,证明四边形AECD是正方形,在结合三角形ABC是等腰三角形,即可说明;(3)先证明.△ACD≌△ABD,得到点B和点C关于AD成轴对称;连接,交于点,且当,,三点在同一条直线上,点到点与到点的距离之和最小,然后结合(1)的结论,运用三角形的面积公式即可求得.
解:(1)垂直
(2).理由如下:
关于的轴对称图形为.
,
在和中,
又是边上的中线
.
.
(3)在和中
点和点关于成轴对称
连接,交于点,如图所示
且当,,三点在同一条直线上,点到点与到点的距离之和最小
在中,.
由(1)知,,
科目:初中数学 来源: 题型:
【题目】某校组织1000名学生参加“展示我美丽祖国”庆国庆的自拍照片的评比活动.随机机取一些学生在评比中的成绩制成的统计图表如下:
根据以上图表提供的信息,解答下列问题:
(1)写出表中a、b的数值:a ,b ;
(2)补全频数分布表和频数分布直方图;
(3)如果评比成绩在95分以上(含95 分)的可以获得一等奖,试估计该校参加此次活动获得一等 奖的人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学对全校学生进行文明礼仪知识测试,为了解测试结果,随机抽取部分学生的成绩进行分析,将成绩分为三个等级:不合格、一般、优秀,并绘制成如下两幅统计图(不完整).
请你根据图中所给的信息解答下列问题:
(1)请将以上两幅统计图补充完整;
(2)若“一般”和“优秀”均被视为达标成绩,则该校被抽取的学生中有______人达标;
(3)若该校学生有1000人,请你估计此次测试中,全校达标的学生有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,EF是Rt△ABC的中位线,∠BAC=90°,AD是斜边BC边上的中线,EF和AD相交于点O,则下列结论不正确的是( )
A. AO=ODB. EF=ADC. S△AEO=S△AOFD. S△ABC=2S△AEF
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对一张矩形纸片ABCD进行折叠,具体操作如下:
第一步:先对折,使AD与BC重合,得到折痕MN,展开;
第二步:再一次折叠,使点A落在MN上的点A′处,并使折痕经过点B,得到折痕BE,同时,得到线段BA′,EA′,展开,如图1;
第三步:再沿EA′所在的直线折叠,点B落在AD上的点B′处,得到折痕EF,同时得到线段B′F,展开,如图2.
求证:(1)∠ABE=30°;
(2)四边形BFB′E为菱形.
图1 图2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】△ABC和△CDE是以C为公共顶点的两个三角形.
(1)如图1,当△ABC和△CDE都是等边三角形时,连接BD、AE相交于点P.求∠DPE的度数;
(2)如图2,当△ABC和△CDE都是等腰直角三角形,且∠ACB=∠DCE=90°时,连接AD、BE,Q为AD中点,连接QC并延长交BE于K.求证:QK⊥BE;
(3)在(1)的条件下,N是线段AE与CD的交点,PF是∠DPE的平分线,与DC交于点F,CN=2,∠PFN=45°,求FN的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线y=ax2+bx+4交x轴于点A(﹣2,0)和B(B在A右侧),交y轴于点C,直线y=经过点B,交y轴于点D,且D为OC中点.
(1)求抛物线的解析式;
(2)若P是第一象限抛物线上的一点,过P点作PH⊥BD于H,设P点的横坐标是t,线段PH的长度是d,求d与t的函数关系式;
(3)在(2)的条件下,当d=时,将射线PH绕着点P顺时针方向旋转45°交抛物线于点Q,求点Q的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)①如图1,已知,,可得__________.
②如图2,在①的条件下,如果平分,则__________.
③如图3,在①、②的条件下,如果,则__________.
(2)尝试解决下面问题:已知如图4,,,是的平分线,,求的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,动点P在射线CB上(与B、C不重合),连结AP,过D作DF∥AP交直线BC于点F,过F作FE⊥直线BD于点E,连结AE、PE.
(1)如图,当点P在线段CB上时
①求证:△ABP≌△DCF;
②点P在运动过程中,探究:△AEP的形状是否发生变化,若不变,请判断△AEP的形状,并说明理由;
(2)如图,当点P在CB的延长线上时,若正方形ABCD的边长为1,设BP=x,当x为何值时,DF平分∠BDC?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com