精英家教网 > 初中数学 > 题目详情
13.若$\sqrt{x-1}$=2,则x的值为5.

分析 利用算术平方根的定义计算即可求出x的值.

解答 解:由$\sqrt{x-1}$=2,得到x-1=4,
解得:x=5.
故答案为:5.

点评 此题考查了算术平方根,熟练掌握算术平方根的定义是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

3.解方程
(1)(x-1)2=49
(2)已知y=$\sqrt{x-\frac{1}{9}}+\sqrt{\frac{1}{9}-x}+\frac{1}{3},求\root{3}{{\frac{x}{y}}}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.正整数按如图所示的规律排列,则第29行第30列的数字为870.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,已知∠AOB=90°,以O为顶点、OB为一边画∠BOC,然后再分别画出∠AOC与∠BOC的平分线OM、ON.
(1)在图1中,射线OC在∠AOB的内部.
①若锐角∠BOC=30°,则∠MON=45°;
②若锐角∠BOC=n°,则∠MON=45°.
(2)在图2中,射线OC在∠AOB的外部,且∠BOC为任意锐角,求∠MON的度数.
(3)在(2)中,“∠BOC为任意锐角”改为“∠BOC为任意钝角”,其余条件不变,(图3),求∠MON的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.在平面直角坐标系中,点P(-2,1)关于y轴对称的点的坐标是(2,1).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.数据50,20,50,30,25,50,55的众数和中位数分别是(  )
A.50,30B.50,40C.50,50D.50,55

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.阅读下列材料,然后回答问题.
先阅读下列第(1)题的解答过程,再解第(2)题.
(1)已知实数a、b满足a2=2-2a,b2=2-2b,且a≠b,求$\frac{a}{b}$+$\frac{b}{a}$的值.
解:由已知得:a2+2a-2=0,b2+2b-2=0,且a≠b,故a、b是方程:x2+2x-2=0的两个不相等的实数根,由根与系数的关系得:a+b=-2,ab=-2.∴$\frac{a}{b}$+$\frac{b}{a}$=$\frac{{{a^2}+{b^2}}}{ab}$
=$\frac{{{{(a+b)}^2}-2ab}}{ab}$=-4
(2)已知p2-2p-5=0,且 p、q为实数,
①若q2-2q-5=0,且p≠q,则:p+q=2,pq=-5;
②若5q2+2q-1=0,且pq≠1,求${p^2}+\frac{1}{q^2}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.计算:-3×|-2|+(-28)÷(-7)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.把能表示成两个正整数平方差的这种正整数称为“吉祥数”.若将“吉祥数”从小到大排成一列:a1,a2,a3,…(如a1=22-12=3,a2=32-22=5,a3=42-32=7,a4=32-12=8,…)那么第25个“吉祥数”a25的值为51.

查看答案和解析>>

同步练习册答案