精英家教网 > 初中数学 > 题目详情

【题目】小明在求同一坐标轴上两点间的距离时发现,对于平面直角坐标系内任意两点P1(x1,y1),P2(x2,y2),可通过构造直角三角形利用勾股定理得到结论:P1P2=;他还证明了线段P1P2的中点P(x,y)的坐标公式是:x=,y=

启发应用

请利用上面的信息,解答下面的问题:

如图,在平面直角坐标系中,已知A(8,0),B(0,6),C(1,7),⊙M经过原点O及点A、B.

(1)求⊙M的半径及圆心M的坐标;

(2)判断点C与⊙M的位置关系,并说明理由.

【答案】(1)5,M(4,3);(2)见解析.

【解析】

根据圆周角定理∠AOB=90°AB为⊙M的直径,则可得到线段AB的中点即点M的坐标,然后利用勾股定理计算出AB=10,则可确定⊙M的半径为5;

求出CM=5和圆M的半径比较大小,即可得出结论.

解:(1)∵∠AOB=90°,

AB是⊙M的直径,

A(8,0),B(0,6),

AB= =10,

∴⊙M的半径为5,

由线段中点坐标公式x= ,y= ,得x=4,y=3,

M(4,3);

(2)点C在⊙M上,

理由:∵C(1,7),M(4,3),

CM= =5,

∴点C在⊙M上.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,CD与⊙O相切于点C,与AB的延长线交于D.

(1)求证:ADC∽△CDB;

(2)若AC=2,AB=CD,求⊙O半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,DC⊙O的直径,点B在圆上,直线ABCD延长线于点A,且∠ABD=∠C.

(1)求证:AB⊙O的切线;

(2)若AB=4cm,AD=2cm,求CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题原型:如图,在等腰直角三角形ABC中,ACB=90°BC=a.将边AB绕点B顺时针旋转90°得到线段BD,连结CD.过点DBCDBC边上的高DE 易证ABC≌△BDE,从而得到BCD的面积为

初步探究:如图,在Rt△ABC中,∠ACB=90°BC=a.将边AB绕点B顺时针旋转90°得到线段BD,连结CD.用含a的代数式表示△BCD的面积,并说明理由.

简单应用:如图,在等腰三角形ABC中,AB=ACBC=a.将边AB绕点B顺时针旋转90°得到线段BD,连结CD.直接写出△BCD的面积.(用含a的代数式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线轴交于两点,与轴交于点,且

1求抛物线的解析式及顶点的坐标;

2判断的形状,证明你的结论;

3轴上的一个动点,当的值最小时,求的值

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD是O的内接四边形,BC的延长线与AD的延长线交于点E,且DC=DE.

(1)求证:A=AEB;

(2)连接OE,交CD于点F,OECD,求证:ABE是等边三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O是△ABC的内切圆,切点分别为D、E、F,A=80°,点P为⊙O上任意一点(不与E、F重合),则∠EPF=______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某专卖店专营某品牌的衬衫,店主对上一周中不同尺码的衬衫销售情况统计如下:

该店主决定本周进货时,增加一些41码的衬衫,影响该店主决策的统计量是(

A.平均数 B.方差 C.众数 D.中位数

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=-1,有以下结论:①abc>0;4ac<b22a+b=0;a-b+c>0.其中正确的结论的个数是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步练习册答案