精英家教网 > 初中数学 > 题目详情

【题目】问题原型:如图,在等腰直角三角形ABC中,ACB=90°BC=a.将边AB绕点B顺时针旋转90°得到线段BD,连结CD.过点DBCDBC边上的高DE 易证ABC≌△BDE,从而得到BCD的面积为

初步探究:如图,在Rt△ABC中,∠ACB=90°BC=a.将边AB绕点B顺时针旋转90°得到线段BD,连结CD.用含a的代数式表示△BCD的面积,并说明理由.

简单应用:如图,在等腰三角形ABC中,AB=ACBC=a.将边AB绕点B顺时针旋转90°得到线段BD,连结CD.直接写出△BCD的面积.(用含a的代数式表示)

【答案】见解析

【解析】试题分析:(1)初步探究:如图②,过点DBC的垂线,BC的延长线交于点E,由垂直的性质就可以得出△ABC≌△BDE,就有DE=BC=a,进而由三角形的面积公式得出结论,

(2)简单运用:如图③,过点AAFBCF,过点DDEBC的延长线于点E,由等腰三角形的性质可以得出BF=BC,由条件可以得出△AFB≌△BED就可以得出BF=DE,由三角形的面积公式就可以得出结论.

试题解析:(1)BCD的面积为,

理由:如图②,过点DBC的垂线,BC的延长线交于点E,

∴∠BED=ACB=90°,

∵线段AB绕点B顺时针旋转90°得到线段BE,

AB=BD,ABD=90°,

∴∠ABC+DBE=90°,

∵∠A+ABC=90°,

∴∠A=DBE,

在△ABC和△BDE,

,

∴△ABC≌△BDEAAS,

BC=DE=a,

SBCD=

SBCD=,

(2)简单应用:如图③,过点AAFBCF,过点DDEBC的延长线于点E,

∴∠AFB=E=90°,BF= ,

∴∠FAB+ABF=90°,

∵∠ABD=90°,

∴∠ABF+DBE=90°,

∴∠FAB=EBD,

∵线段BD是由线段AB旋转得到的,

AB=BD,

在△AFB和△BED,

,

∴△AFB≌△BEDAAS,

BF=DE= ,

SBCD= ,

SBCD=,

∴△BCD的面积为,

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm.动点P、Q分别从点A、B同时开始移动,点P的速度为1 cm/秒,点Q的速度为2 cm/秒,点Q移动到点C后停止,点P也随之停止运动下列时间瞬间中,能使△PBQ的面积为15cm 的是(

A. 2秒钟 B. 3秒钟 C. 4秒钟 D. 5秒钟

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx+c的图象分别经过点(0,3)(3,0)(﹣2,﹣5),

(1)求这个二次函数的解析式;

(2)若这个二次函数的图象与x轴交于点C、D(C点在点D的左侧),且点A是该图象的顶点,请在这个二次函数的对称轴上确定一点B,使ABC是等腰三角形,求出点B的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等腰 Rt△ABC 中,AC=BC= 2,点 P 在以斜边 AB 为直径的半圆上,M 为 PC的中点.当点 P 沿半圆从点 A 运动至点 B 时,点 M 运动的路径长是( )

A. 2 B. 2 C. π D. π

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线 yax2bx+3 经过点(2,-1), x 轴交于 A(1,0)、B 两点 y轴交于点 C

(1) 求抛物线解析式

(2) 如图,点 E 是直线 BC 下方抛物线上的一动点.当BEC 面积最大时,请求出点 E 的坐标

(3) P 是第四象限内抛物线上的一动点,PA y 轴于 D,BP y 轴于 E, P PN⊥y 轴于N,的值

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某超市销售一种牛奶,进价为每箱24元,规定售价不低于进价.现在的售价为每箱36元,每月可销售60箱.市场调查发现:若这种牛奶的售价每降价1元,则每月的销量将增加10箱,设每箱牛奶降价x(x为正整数),每月的销量为y箱.

1)写出yx中间的函数关系式和自变量的取值范围;

2)超市如何定价,才能使每月销售牛奶的利润最大?最大利润是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明在求同一坐标轴上两点间的距离时发现,对于平面直角坐标系内任意两点P1(x1,y1),P2(x2,y2),可通过构造直角三角形利用勾股定理得到结论:P1P2=;他还证明了线段P1P2的中点P(x,y)的坐标公式是:x=,y=

启发应用

请利用上面的信息,解答下面的问题:

如图,在平面直角坐标系中,已知A(8,0),B(0,6),C(1,7),⊙M经过原点O及点A、B.

(1)求⊙M的半径及圆心M的坐标;

(2)判断点C与⊙M的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O的直径AD长为6,AB是弦,CDAB,A=30°,CD=

(1)求∠C的度数;

(2)求证:BC是⊙O的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形OABC中,OA=3,OC=2,F是AB上的一个动点(F不与A,B重合),过点F的反比例函数y= (x>0)的图象与BC边交于点E.

(1)当F为AB的中点时,求该函数的解析式;

(2)当k为何值时,△EFA的面积最大,最大面积是多少?

查看答案和解析>>

同步练习册答案