精英家教网 > 初中数学 > 题目详情

【题目】将抛物线向上平移2个单位长度,再向右平移3个单位长度后得到y=﹣(x22+3,则原抛物线的解析式为(  )

A.y=﹣(x+12+1B.y=﹣(x121

C.y=﹣x2D.y=﹣(x52+5

【答案】A

【解析】

根据平移规律,求出原抛物线的顶点坐标,从而求出原抛物线解析式.

y=﹣(x22+3

∴平移后所得抛物线的顶点坐标为(23),

∵抛物线向上平移2个单位长度,再向右平移3个单位长度后得到y=﹣(x22+3

∴平移前抛物线顶点坐标为(﹣11),

∴平移前抛物线为:y=﹣(x+12+1

故选:A

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】计算:2x3x3+3x325x6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在正方形ABCD中,E、F分别为BC、CD的中点,AE与BF相交于点G.

(1)如图1,求证:AE⊥BF;

(2)如图2,将△BCF沿BF折叠,得到△BPF,延长FP交BA的延长线于点Q,若AB=4,求QF的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,矩形OCDE的三个顶点分别是C(3,0),D(3,4),E(0,4).点A在DE上,以A为顶点的抛物线过点C,且对称轴x=1交x轴于点B.连接EC,AC.点P,Q为动点,设运动时间为t秒.

(1)填空:点A坐标为 ;抛物线的解析式为

(2)在图1中,若点P在线段OC上从点O向点C以1个单位/秒的速度运动,同时,点Q在线段CE上从点C向点E以2个单位/秒的速度运动,当一个点到达终点时,另一个点随之停止运动.当t为何值时,△PCQ为直角三角形?

(3)在图2中,若点P在对称轴上从点A开始向点B以1个单位/秒的速度运动,过点P做PF⊥AB,交AC于点F,过点F作FG⊥AD于点G,交抛物线于点Q,连接AQ,CQ.当t为何值时,△ACQ的面积最大?最大值是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商店原来平均每天可销售某种水果200千克,每千克可盈利6元,为减少库存,经市场调查,如果这种水果每千克降价1元,则每天可所多售出20千克.

(1)设每千克水果降价x元,平均每天盈利y元,试写出y关于x的函数表达式;

(2)若要平均每天盈利960元,则每千克应降价多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若|a﹣3|+(2b﹣4)2=0,则3(a﹣b)﹣2(2a﹣3b)的值是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个学生由于粗心,在计算35﹣a的值时,误将“﹣”看成“+”,结果得63,则35﹣a的值应为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场为了吸引顾客,设置了两种促销方式.一种方式是:让顾客通过转转盘获得购物券.规定顾客每购买100元的商品,就能获得一次转转盘的机会,如果转盘停止后,指针正好对准100元、50元、20元的相应区域,那么顾客就可以分别获得100元、50元、20元购物券,凭购物券可以在该商场继续购物;如果指针对准其他区域,那么就不能获得购物券.另一种方式是:不转转盘,顾客每购买100元的商品,可直接获得10元购物券.据统计,一天中共有1 000人次选择了转转盘的方式,其中指针落在100元、50元、20元的次数分别为50次、100次、200.

(1)指针落在不获奖区域的概率约是多少?

(2)通过计算说明选择哪种方式更合算?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线交BC于点E(尺规作图的痕迹保留在图中了),连接EF.

(1)求证:四边形ABEF为菱形;

(2)AE,BF相交于点O,若BF=6,AB=5,求AE的长.

查看答案和解析>>

同步练习册答案