【题目】已知Rt△ABC中,∠B=90°,AC=20,AB=10,P是边AC上一点(不包括端点A、C),过点P作PE⊥BC于点E,过点E作EF∥AC,交AB于点F.设PC=x,PE=y.
(1)求y与x的函数关系式;
(2)是否存在点P使△PEF是Rt△?若存在,求此时的x的值;若不存在,请说明理由.
【答案】(1)(0<x<20);(2)当x=10或x=16,存在点P使△PEF是Rt△.
【解析】
试题分析:(1)在Rt△ABC中,根据三角函数可求y与x的函数关系式;
(2)分三种情况:①如图1,当∠FPE=90°时,②如图2,当∠PFE=90°时,③当∠PEF=90°时,进行讨论可求x的值.
试题解析:(1)在Rt△ABC中,∠B=90°,AC=20,AB=10,∴sinC=,∵PE⊥BC于点E,∴sinC==,∵PC=x,PE=y,∴(0<x<20);
(2)存在点P使△PEF是Rt△,①如图1,当∠FPE=90°时,四边形PEBF是矩形,BF=PE=x,四边形APEF是平行四边形,PE=AF=x,∵BF+AF=AB=10,∴x=10;
②如图2,当∠PFE=90°时,Rt△APF∽Rt△ABC,∠ARP=∠C=30°,AF=40﹣2x,平行四边形AFEP中,AF=PE,即:40﹣2x=x,解得x=16;
③当∠PEF=90°时,此时不存在符合条件的Rt△PEF.
综上所述,当x=10或x=16,存在点P使△PEF是Rt△.
科目:初中数学 来源: 题型:
【题目】某校有25名同学参加某比赛,预赛成绩各不相同,取前13名参加决赛,其中一名同学已经知道自己的成绩,能否进入决赛,只需要再知道这25名同学成绩的( )
A.最高分
B.平均数
C.中位数
D.方差
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,AC=BC=3,点D在边AC上,且AD=2CD,DE⊥AB,垂足为点E,联结CE,求:
(1)线段BE的长;
(2)∠ECB的余切值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知平行四边形ABCD的顶点A在第三象限,对角线AC的中点在坐标原点,一边AB与x轴平行且AB=2,若点A的坐标为(a,b),则点D的坐标为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直立于地面上的电线杆AB,在阳光下落在水平地面和坡面上的影子分别是BC、CD,测得BC=6米,CD=4米,∠BCD=150°,在D处测得电线杆顶端A的仰角为30°,试求电线杆的高度(结果保留根号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,线段BE上有一点C,以BC,CE为边分别在BE的同侧作等边三角形ABC,DCE,连接AE,BD,分别交CD,CA于Q,P.
(1)找出图中的所有全等三角形.
(2)找出一组相等的线段,并说明理由.
(3)如图2,取AE的中点M、BD的中点N,连接MN,试判断三角形CMN的形状,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列事件中,属于必然事件的是( )
A. 随时打开电视机,正在播新闻
B. 优秀射击运动员射击一次,命中靶心
C. 抛掷一枚质地均匀的骰子,出现4点朝上
D. 长度分别是3cm,5cm,6cm的三根木条首尾相接,组成一个三角形
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某市“单独两孩”政策开始实施,该政策的实施可能给我们的生活带来一些变化,人口计生部门抽样调查了部分市民(每个参与调查的市民必须且只能在以下6种变化中选择一项),并将调查结果绘制成绕计图.
种类 | A | B | C | D | E | F |
变化 | 有利于延缓社会老龄化现象 | 导致人口暴增 | 提升家庭抗风险能力 | 增大社会基本公共服务压力 | 缓解男女比例不平衡的现象 | 促进人口与社会、资源、环境的协调可持续发展 |
(1)参与调查的市民一共有人;
(2)参与调查的市民中选择C的人数是人;
(3)∠α=;
(4)请补全条形统计图.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com