精英家教网 > 初中数学 > 题目详情

【题目】如图,Rt△ABC中,∠ACB=90°,D是斜边AB上的中点,E是边BC上的点,AE与CD交于点F,且AC2=CECB.
(1)求证:AE⊥CD;
(2)连接BF,如果点E是BC中点,求证:∠EBF=∠EAB.

【答案】
(1)证明:∵AC2=CECB,

又∵∠ACB=∠ECA=90°

∴△ACB∽△ECA,

∴∠ABC=∠EAC.

∵点D是AB的中点,

∴CD=AD,

∴∠ACD=∠CAD

∵∠CAD+∠ABC=90°,

∴∠ACD+∠EAC=90°

∴∠AFC=90°,

∴AE⊥CD


(2)证明:∵AE⊥CD,

∴∠EFC=90°,

∴∠ACE=∠EFC

又∵∠AEC=∠CEF,

∴△ECF∽△EAC

∵点E是BC的中点,

∴CE=BE,

∵∠BEF=∠AEB,

∴△BEF∽△AEB

∴∠EBF=∠EAB.


【解析】(1)先根据题意得出△ACB∽△ECA,再由直角三角形的性质得出CD=AD,由∠CAD+∠ABC=90°可得出∠ACD+∠EAC=90°,进而可得出∠AFC=90°;(2)根据AE⊥CD可得出∠EFC=90°,∠ACE=∠EFC,故可得出△ECF∽△EAC,再由点E是BC的中点可知CE=BE,故 ,根据∠BEF=∠AEB得出△BEF∽△AEB,进而可得出结论.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】一个批发商销售成本为20元/千克的某产品,根据物价部门规定:该产品每千克售价不得超过90元,在销售过程中发现的售量y(千克)与售价x(元/千克)满足一次函数关系,对应关系如下表:

售价x(元/千克)

50

60

70

80

销售量y(千克)

100

90

80

70


(1)求y与x的函数关系式;
(2)该批发商若想获得4000元的利润,应将售价定为多少元?
(3)该产品每千克售价为多少元时,批发商获得的利润w(元)最大?此时的最大利润为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣x,g(x)=ex﹣ax﹣1(e为自然对数的底数).
(1)讨论函数g(x)的单调性;
(2)当x>0时,f(x)≤g(x)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙P内含于⊙O,⊙O的弦AB切⊙P于点C,且AB∥OP.若阴影部分的面积为16π,则弦AB的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣x2+bx+c与x轴交于A(1,0),B(﹣3,0)两点.

(1)求该抛物线的解析式;
(2)设(1)中的抛物线交y轴与C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由;
(3)在(1)中的抛物线上的第二象限上是否存在一点P,使△PBC的面积最大?若存在,求出点P的坐标及△PBC的面积最大值;若没有,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,点E在边AD上,联结CE并延长,交对角线BD于点F,交BA的延长线于点G,如果DE=2AE,那么CF:EF:EG=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,如果∠ADC=∠BAC,那么下列条件中不能判定△ADC和△BAC相似的是(
A.∠DAC=∠ABC
B.AC是∠BCD的平分线
C.AC2=BC?CD
D. =

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一张直角三角形纸片ABC,∠C=90°,AB=24,tanB= (如图),将它折叠使直角顶点C与斜边AB的中点重合,那么折痕的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解方程组
(1)解方程组:
(2)解不等式: <x.

查看答案和解析>>

同步练习册答案