精英家教网 > 初中数学 > 题目详情

【题目】在△ABC中,AB=ACBC=12E为边AC的中点,

(1)如图1,过点EEH⊥BC,垂足为点H,求线段CH的长;

(2)作线段BE的垂直平分线分别交边BCBEAB于点DOF.

①如图2,当∠BAC=90°时,求BD的长;

②如图3,设tan∠ACB=xBD=y,求yx之间的函数表达式和tan∠ACB的最大值.

【答案】(1)3(2)5(3)①

【解析】试题分析:(1)AAGBCBC于点G,则EHAG,由等腰三角形的性质得CG=6,再由EAC中点可得HCG的中点.

2过点E于点HRtEDH中可得解方程求出x的值;由 ,可得 ,在中,根据勾股定理列出关系式然后整理可得yx之间的函数表达式;求tan∠ACB的最大值有两种方法一是利用正切的增减性,二是利用数形结合.

解:(1)点A作AG⊥BC交BC于点G.

∵E为AC中点,EH∥AG,

∴H为CG的中点,∴CH=3,

⑵①过点E作于点H,

∵△ABC是等腰直角三角形,则CH=EH=3,

,则

Rt△EDH中,

解之得,

即BD=5,

②∵

中,

方法一:由得,

当y有最大值时,x有最大值.即tan∠ACB有最大值.

∴当y=12时, (负的舍去),

∴tan∠ACB最大值为

或方法二:当点D与点C重合时,tan∠ACB最大,

.

BC边的高为

此时tan∠ACB=.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在△ABC 中,ABACD 是直线 BC 上一点(不与点 BC 重合),以 AD 为一边在 AD的右侧作△ADEADAE,∠DAE=∠BAC,连接 CE.

1)如图 1,当点 D 在线段 BC 上时,求证:ABD≌△ACE

2)如图 2,当点 D 在线段 BC 上时,如果∠BAC90°,求∠BCE 的度数;

3)如图 3,若∠BAC=α,∠BCE=β.D 在线段 CB 的延长线上时,则α、β之间有怎样 的数量关系?并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平面直角坐标系中,O为菱形ABCD的对称中心,已知C20),D0﹣1),N为线段CD上一点(不与CD重合).

1)求以C为顶点,且经过点D的抛物线解析式;

2)设N关于BD的对称点为N1N关于BC的对称点为N2,求证:△N1BN2∽△ABC

3)求(2)中N1N2的最小值;

4)过点Ny轴的平行线交(1)中的抛物线于点P,点Q为直线AB上的一个动点,且∠PQA=∠BAC,求当PQ最小时点Q坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图等边三角形ABC的边长为4ADBC边上的中线FAD边上的动点EAC边上一点AE2EFCF取得最小值时∠ECF的度数为( )

A. 20° B. 25° C. 30° D. 45°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,抛物线y轴于点A,交直线x=6于点B.

1填空:抛物线的对称轴为x=_________,点B的纵坐标为__________(用含a的代数式表示);

2若直线ABx轴正方向所夹的角为45°时,抛物线在x轴上方,求的值;

3记抛物线在AB之间的部分为图像G(包含AB两点),若对于图像G上任意一点总有≤3,求a的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,AB=AC∠BAC=54°∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EFEBC上,FAC上)折叠,点C与点O恰好重合,则∠OEC   度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,从A地到B地的公路需经过C地,图中AC=10千米,∠CAB=25°,CBA=37°,因城市规划的需要,将在A、B两地之间修建一条笔直的公路.

(1)求改直的公路AB的长;

(2)问公路改直后比原来缩短了多少千米?(sin25°≈0.42,cos25°≈0.91,sin37°≈0.60,tan37°≈0.75)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,∠C=90°,A=30°,BD是∠ABC的平分线,CD=5cm,求AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)如图1所示,ABC中,∠ACB的角平分线CF与∠EAC的角平分线AD的反向延长线交于点F

①若∠B90°则∠F   

②若∠Ba,求∠F的度数(用a表示);

2)如图2所示,若点GCB延长线上任意一动点,连接AG,∠AGB与∠GAB的角平分线交于点H,随着点G的运动,∠F+H的值是否变化?若变化,请说明理由;若不变,请求出其值.

查看答案和解析>>

同步练习册答案